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The no free lunch condition is neither necessary nor sufficient
for the utility set to be closed and bounded in asset markets
where the preferred sets do not have the same recession cone.
This paper characterizes the utility set with non-concavifiable
preferences and provides the existence of competitive equilibrium
when the set of efficient allocations is not necessarily bounded.
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I. Introduction

An economy with asset markets differs from the classical
economy in that the former may allow agents to hold an unlimited
negative holding of assets. If short sales are not restricted, the
consumption sets are not bounded below. In this case, the classical
theorems of the existence of equilibria cannot be applied. Beyond
the usual assumptions like continuity and convexity of preferences,
the literature employs two more assumptions that make the utility
set closed and bounded.' One assumption concerns restrictions on
convex preferences like concavifiability, while the other concerns the
no ‘free lunches’ condition.” These are easily characterized with
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the commodity bundles that always yield nonnegative marginal

! 2Concavifi-
able preferences possess the property that the recession cone of
each preferred set coincides with the preferred cone.3 A nonzero
element of the preferred cone becomes a free lunch if it does not
have a positive price. Werner (1987) demonstrates that the no free
lunch condition is necessary and sufficient for the existence of
competitive equilibrium under the assumption that all the preferred
sets have the same recession cone and no halflines exist in
indifference curves. Subsequently, Page and Wooders (1996), Dana,
Le Van and Magnien (1999) and Page, Wooders and Monteiro
(2000) among others introduce a general notion of free lunch to
explain the compactness of the utility set. All of the literature are
concerned about the existence of equilibrium with the compact
utility set.

No economic rationale, however, is yet established for the
uniformity of the recession cones for the preferred sets or the
compactness of the utility set when consumptions arise beyond the
domain of the nonnegative quantities in the commodity space. If
the preferred sets do not have the same recession cone, then the
no free lunch condition is neither necessary nor sufficient for the
utility set to be closed and bounded. This paper characterizes the
utility set with non-concavifiable preferences and provides the
existence of competitive equilibrium when the set of efficient
allocations is not necessarily bounded.

One difficulty with the non-compact utility set is that the
conventional fixed-point arguments cannot apply for the existence
of competitive equilibrium. Fixed point arguments involve the
boundary condition either on the price simplex or on the utility set.
For example, the boundary condition to be checked with the
Negishi approach is that each weakly efficient allocation of
consumptions on the boundary of the contract curve have a price
support which makes each agent rich enough to purchase his

'The closedness hypothesis is fulfilled if the set of individually rational
tradings is bounded. A trading is individually rational if it weakly Pareto
improves the initial allocation.

*Preferences are concavifiable if they can be represented by a concave
utility function.

5The recession cone of a convex set S in a Euclidean space is the
maximal of the convex cones C’s that satisfy S+C=S.
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consumption.4 It is always satisfied with the compact utility set
because its boundary arises where the contract curve meets the
indifference curves through the initial endowment for all agents.
This is not the case, however, with the non-compact utility set. If
the contract curve is unbounded, it does not meet the indifference
curve through the initial endowment for some agent which leads to
the failure of the boundary condition. To avoid the dilemma with
the non-compact utility set, we work out ‘a boundary’ for the
contract curve by tearing away its farther part. The problem is how
to make the boundary of the truncated contract curve the ‘real’
boundary of the utility set. At this point we develop a trick to map
the truncated utility set homeomorphically into the unit simplex. In
particular, there exists a homeomorphism between the two sets.
The ordinary boundary condition is imposed on the worked-out
boundary through the simplex. We assume that the artificial
boundary of the contract curve behaves as if the truncated part
were the whole contract curve of the economy. This condition
cannot be dispensed with because it turns out to be necessary and
sufficient for competitive equilibrium to exist in a two-agent
economy.

The result of this paper is useful to the equilibrium asset pricing
literature. Connor (1984) provides a unification of the capital asset
pricing model (CAPM) into a competitive equilibrium version of the
arbitrage pricing theory (APT). Milne (1988) extends the equilibrium
arbitrage pricing theory (EAPT) of Connor in several directions. In
particular, Milne (1988) allows preferences to be non-concavifiable
so that they may not follow the expected utility or the concavity
hypothesis. This extension is valuable because it encompasses
many interesting cases which cannot be explained in Connor
(1984). The prevalence of those asset pricing models in the
literature makes it significant to know under what conditions an
asset economy has an equilibrium.

In the case where no restriction is imposed on short-selling, the
trading opportunities become much larger than otherwise. In this
case, we must look at the other side of the coin. Selling short
today entails liabilities to repay tomorrow. The larger today’s short
sales, the greater tomorrow’s risk of default. Default or bankruptcy

“Strictly speaking, we must say the ‘relative boundary’ of the contract
curve to emphasize the topological condition.
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involves financial distress. Since the extent of default is associated
with the size and the proportion of short sales in a portfolio, these
factors must be taken into account in making portfolio choices. The
degree to which such factors influence portfolio choices may depend
on the attitude toward taking the risk of financial distress. The
more reluctant people are to face the risk of financial distress, the
more conservative they are in taking short positions. As illustrated
below, such diverse aspects of taking financial risks are not well
represented under those restrictions like concavifiability. Furthermore,
Malinvaud (1985) and Luenberger (1995) demonstrate that convex
preferences already represent ‘risk aversion’ without restriction on
preferences like concavity. Luenberger (1995) shows that preferences
are convex if and only if they are risk averse everywhere and
provides the risk aversion coefficient with convex preferences that is
a generalization of the Arrow-Pratt measure of risk aversion. These
results imply that the concavity assumption is restrictive in
describing risk-taking behavior.

It is useful to classify commodity bundles according to their
desirability. A commodity bundle is called locally, indifferently, or
uniformly desirable if its marginal utility is nonnegative at some
consumptions, at every consumption along an indifference curve, or
at every consumption in the consumption set, respectively.5 A
uniformly desirable bundle is a free lunch if its market value is
nonnegative. Mathematically speaking, the set of commodity
bundles which are indifferently desirable is the recession cone of
the preferred set.

The existence of equilibria problem in an asset economy with
unrestricted short sales is initially addressed in Hart (1974). In this
work, preferences over contingent returns are assumed to follow the
expected utility hypothesis. Instead of abstracting from details on
stochastic structures of asset returns, Werner (1987) extends the
results of Hart (1974) by imposing the restriction that every
preferred set has the same recession cone. Though the latter
assumption is weaker than the former, they are indistinguishable in
the light of the desirability condition because both require the
preferred sets to have the same recession cone. As remarked

These definitions are made in an exact way later. If a utility function u
is differentiable, the marginal utility of v at x is the directional derivative of
u at x, Dyuld=lim¢.o(1/t){ubc+tv) —ulx}.
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earlier, Werner (1987) shows that an economy has equilibria if
there exist non-arbitrage prices. This condition is equivalent to the
one that the recession cones for all agents are positively
semi-independent.6 Nielsen (1989) allows the preferred sets to have
the distinct recession cone and considers a class of economies in
which the set of individually rational allocations is bounded but
can be unbounded only if indifference curves have lines. Nielsen
(1989) fails, however, to take into account the effect of a bundle
which is indifferently but not uniformly desirable on the existence
of equilibria.

Now, consider an asset economy in which an agent faces a
two-period decision making problem as following. In the first period,
the agent trades two contingent claims [ and h which will deliver
money to the asset holder only if the specific event occurs in the
second period. Assume that the utility depends upon the amount of
money to be delivered in each contingency and that there is no
restriction on short selling these assets. Contingencies in the
second period consist of two events L and H. Asset | delivers one
unit of money if L occurs in the second period and nothing
otherwise, while h one unit of money if H occurs and nothing
otherwise. Let yr. and yn denote the numbers of units of contingent
money delivered in the second period. Preferences are assumed to
be convex and to be represented by uly., ym; ¢), where ¢ denotes
the probabilistic belief that L will occur.

Let x=(x, xn) denote the holdings of contingent claims. Since
claims are of Arrow-Debreu type, the utility of holding a portfolio x
is given as ulx, xn; ¢).7 Suppose that indifference curves of ulx;, xu;
¢) look as in Figure 1. The initial holding w of assets is on the
indifference curve I.

Portfolios which consist of long positions in claims are uniformly
desirable to the agent because they generate positive income in

°A finite set of cones [C} in a Euclidean space is positively semi-
independent if v;€C; and > ;=0 implies v;=0 for all i.

Tt is possible to give a numerical example. Suppose a parameter u in (O,
1) satisfies a parabolic relation {2(0.5+ ¢ +ux;+xn—tan(u+0.5) 7 {(1+ ¢ —wx
+xp—tan(u+0.5) r}=1. For a given u, the relation can be considered
representing an indifference curve. The indifference curve is an upper part
of the parabola with asymptotes xp=tan(u+0.5)7 —2(0.5+ ¢ +u)x; and xp=
tan(wu+0.5) 7 —(1+ ¢ —uwx;. The recession cone corresponding to u is a
convex cone generated by two vectors (=1, 1+2¢ +2u) and (1,—1— ¢ +u).
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FIGURE 1

each state. A portfolio whose positions are short in one asset and
long in the other asset can be indifferently desirable whenever the
ratio of the short position to the long one is modest. For example,
the bundle v’ is indifferently desirable because the marginal utility
is positive along I’. In contrast, the marginal utility of v is positive
at every holding along I but no longer along I'. Equivalently, u(w+
AV; ¢) is initially increasing but eventually decreasing in A >0.

Specifically, the marginal utility of v is negative at the holdings
along I’ to the left of x. This is because its addition to such
holdings brings about the larger short position in [, as well as its
higher proportion to the long position in h (Note that x has the
same direction as v or their ratios are the same between a short
position in [ and a long position in h). For example, a portfolio y’=
y+v is worse than y in the sense that ‘short’ and the ratio of
‘short’ to ‘long’ at y’ are greater than at y. To take a more
general case, choose a portfolio t satisfying w(t; ¢)>uly; ¢). Then
there is a sufficiently large number A that makes both the short
and relative positions of t+ Av so undue that u(t+ Av; ¢)<uly; ¢)
obtains. On the other hand, any units of v are indifferently
desirable at every holding along I because they contribute to
improving the relative position. For example, the relative position of
z’=z+v is better than that of z.

What matters here is the agent’s attitude toward short sales. The
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agent might suffer financial trouble, institutional disadvantages or
personal disgraces due to a bankruptcy which could result from an
undue imbalance between a short and a long position in his
portfolio. Thus his willingness to take a portfolio with mixed
positions may be influenced by the absolute size of ‘short’ as well
as the relative magnitude of ‘short’ to ‘long.’

In summary, the portfolio v is indifferently desirable along I while
it is not along I In other words, it is a direction of recession of
the set of consumptions which are preferred to w but not of the
set of consumptions which are preferred to x. Therefore the
preferred sets of u(x, xn; ¢) do not have the same recession cone.
This implies that the utility function ulx, xn; ¢) is not concave (For
such results, see Rockafella (1970)).

An economy under study is described in Section II. Section III is
devoted to presenting the basic framework of Milne’s EAPT model
and an example in which the set of weakly efficient allocations is
unbounded. Three types of desirability are characterized in Section
IV. In Section V, we extend the closedness hypothesis to the case
that the utility set is not closed. Near-boundary conditions are
formalized in Section VI. The existence of equilibria is shown in
Section VII. Section VIII is devoted to the cases which satisfy the
near-boundary condition.

The following mathematical notations will be used. By ‘int C’
and ‘cl C’, we denote the interior and the closure of a set C in the
subspace of a Euclidean space, respectively (the subspace must be
clear from the context).

II. The Model

We consider an economy in which [ commodities including assets
and real goods are traded by m consumers indexed by i. Let I
denote a set of m consumers (1,---,m). The consumption set of
consumer i is a subset X; of R. The consumer has a preference
relation >; over X; with the endowment w; in X;. We make the
following basic assumptions about a consumer’s characteristics.

(Al) X; is nonempty, closed, convex and >; is continuous, complete
on X;.
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(A2) >; is locally non-satiable and for x and x’ in X;, x>;x’ implies
ax+(1— a)x’>ix’ for all «<(0, 1).8

Conditions (Al) and (A2) cover the case of no restrictions on short
sales of securities or contingent claims as well as the cases with
differentially restricted participation in asset markets. It is well-
known that under (Al) and (A2), >; is represented by a continuous
and quasiconcave utility function w;. The function u; is normalized
with w(w)=0 for each i. Let u;=supiextlx). Since a monotonic
transformation preserves the preference ordering, we may assume
that the range of u; is in a finite open interval (a, b) for some
numbers a and b with a<0<b. Then w; is in (a, b) for every i€ L.

An allocation is an m-tuple x=(x,---,xn) with each x in X;. The
initial allocation is denoted by w=(w, -,wm). An allocation x is
attainable if 2%, x=2>", w; and individually rational if it is attain-
able, and wul)>ui(w) for every i=Il. Let Q denote the set of
individually rational allocations. A consumption y is Pareto attain-
able for consumer i if there is an allocation x in @Q whose ith
component is y. By Q; we denote the set of Pareto attainable
consumptions. This set is the projection of Q onto X;. Set 1= SUPxeq:
uix) for each i€Il. Let G denote the set of allocations in @ which
are weakly efficient, and G; the projection of G onto X;. Each point
in G; is called a Pareto consumption.

Define a mapping U : [I1X; — R7T by UbJ=(wlx), - ,umlxn). A point
y in R7 is a utility allocation if there is some y<X; with y;<wl(y)
for every i€Il. Let T be a set of utility allocations in R?. Then a
utility allocation vy €T is weakly efficient (efficient) relative to T if
there is no point vy’ in T such that v”> v(v’> v, respectively).9 Let
OM((T) denote a set of utility allocations which are weakly
efficient (efficient, resp.) relative to T. A utility allocation v is
attainable if there is some x=Q with y<U(x). Let W denote the set
of attainable utility allocations. For a utility allocation v, let Q(v)
denote a set {(xQ | Ux) > v}. By definition, Q(v) is not empty if v
is attainable. A price system p in R' is said to support a utility
allocation v if p(X2L . x;—w)>0 for each allocation xeQ(v).

®Instead of local non-satiation, what is really needed is that a satiation
does not occur in the set of attainable allocations or that the set of
satiations are unbounded as in Werner (1987).

°Let v and v’ be vectors in R™ Then v>v’ implies v;>v’ for all i€l ; v>
v’ implies v>v’ and v=v’ ; and v>v’ implies v;>v; for all i€l
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III. An EAPT Example

This section presents an EAPT model of Milne (1988) as a
motivation for the current research into a more general theorem on
the existence of equilibria than available in the literature. Milne’s
model is modified into the setting of Section II. A consumer (€]
trades a finite number of assets, which pay contingent returns in
the end of the period. Each consumer has preferences over
contingent monetary returns, which are represented by a utility
function g;. Let V be a topological vector space. There are finitely
many assets indexed by j=1,---,l which deliver monetary returns Z;
€V.10 Define a linear mapping Z: R' — V by Z(a)=3XaZ for a point
a=R'. Tradeable portfolios of each consumer i are restricted to X
He obtains a utility gi(Z(J) from holding a portfolio x€X;. Assume
that the function g;: Z(X) — R is continuous and quasiconcave.
Define the induced utility function over assets u;: X; — R by wbd=
gilZ(x)). Then the function u; satisfies (A2).

To illustrate an example in which the contract curve is
unbounded, assume there are two agents and two assets whose
returns are linearly independent. Suppose that the indifference
curves and the contract curve of the induced preferences look as in
Figure 2, where the Edgeworth’s box occupies the whole plane.

The directions v and —v represent a desired portfolio along the
indifference curve I for agent 1 and along II for agent 2 through
the initial allocation of claims e, respectively. The picture can be
drawn in the following way. First, the contract curve is not empty.
For example, the point a is in the contract curve. Second, the
vector v is the direction of the line that intersects only once any
indifference curve for agent 1 above I, implying that v is a
uniformly desirable portfolio for agent 1. On the other hand, —v is
indifferently desirable along II but not uniformly desirable for agent
2 because it is a direction of the recession of the preferred set with
II but not with the indifference curve through b. As demonstrated
later, these conditions require that the contract curve is unbounded.

The reason that the contract curve fails to be bounded in this
example is the presence of the portfolio v.1l1 In the case with the

An ‘insurable’ economy with infinitely many assets whose payoffs take
the form of a factor model with finite factors is reduced to a finite economy.
For details, see Connor (1984).
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FIGURE 2

compact utility set, the fact that weakly efficient allocations on its
boundary have a price support leads to the boundary condition
necessary for the Negishi approach to work. The truism, however,
does not hold here because the utility set is not closed in R’.

Nevertheless, geometric intuition ensures that an equilibrium
exists between a and b on the contract curve in Figure 2; push a
line along the contract curve from a to b while keeping it tangent
to the indifference curves through an efficient allocation, then the
line must cross e to reach b; since this pushing process is
continuous, there must be an efficient allocation at which the
tangent line goes through e. It is worthwhile to note that each
agent’s initial endowment is located above the tangent budget line
through a and b, respectively. In other words, the boundary
condition is realized ‘near the boundary.’ This idea will be
formalized in the subsequent section.

"If v were not to be indifferently desirable for any agent, the set of
individually rational allocations would be compact. For details, see Nielsen
(1989).
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IV. Unbounded Contract Curves

The types of desirability can be classified by using a direction of
recession of a set which is defined in Rockafellar (1970). A vector v
=R' is a direction of recession of a convex set C in R if x+ iveC
for all xC and A>0. The set of all directions of recession of C is
the recession cone of C. The cone is convex, and closed if C is
closed. It is well-known that v in R' is a direction of recession of C
if and only if v=Ilim A,x, for some {x,} in C and {2, in R, with A,
— 0 (For more discussions, see the Appendix). Let Xi(z) or Xi(u)
denote the preferred set {z’€X; | u(z)>u=ul(z)} and X?(u) a set {z’&
Xi | u(z)>u}. By Al2) (A{w), we denote the recession cone of X(z)
(Xi(u), respectively). We formalize the notions of desirability as
follows

Definition 1: A commodity bundle vER' is locally desirable (in
short, [-desirable) at some x€X; if wlx+v)>uwlx), indifferently
desirable (i-desirable) along u if wilx+v)>u for all x satisfying w(x)=
u, and uniformly desirable (u-desirable) if w(x+v)>uix) for all x&X,.

Equivalently, v is in Aju) if and only if it is i-desirable along w. It
is also clear that v is in Ad{x for every x€X; if and only if it is
u-desirable. Let A; denote the collection of commodity bundles
which are u-desirable for the consumer i, called the preferred cone.
Obviously, it is the intersection of the recession cones Aix) over all
x€X;. It is well-known that if u; is concave, Aix)’s coincide with A;
for all x€X;. That is, every preferred set of u; has the recession
cone A; (This result is stated in Appendix). We assume

(A3) The set of cones {A} is positively semi-independent.

This condition is closely related to the absence of free lunch. If
indifference curves do not contain a halfline for all agents, (A3) is
necessary to preclude free lunch. Suppose there is a set {v}, not all
zero, that satisfies v;€A; for each i€l and Xicav;=0. For any
nonzero price system pERl, we see Xicapvi=0, implying pv,<0 and
vr=0 for some h. Since indifference curves have no halfline, the
marginal utility of v, at all consumptions is positive. Therefore vy is
a free lunch for the agent h. The condition (A3) is necessary for the
existence of efficient allocations and competitive equilibrium.
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However, it is far from being a sufficient condition for their
existence. It is easy to take a two-agent economy that satisfies (A3)
but allows no efficient allocation. The following proposition shows
that if G is not empty, it is unbounded as in the example of Figure 2.

Proposition 1

Suppose that there exists {v} with v;€A(w) such that Zv;=0 and
vhEAR\ {0} for some h in I. Assume indifference curves of u, have
no halflines. Then the set G is either empty or closed and
unbounded.

Proof: Assume G=#. Let {x,} be a sequence in G that converges to
a point x. Suppose that x is not weakly efficient. Then there exists
an allocation x’ in Q such that U)>U). For sufficiently large n,
we see Ulx)>Ulx,), which is impossible. Therefore G is closed.
Suppose G is bounded. It is well-known that if G is closed and
bounded, so is the set W. Let W, denote the projection of W onto
the hth axis of R™. It follows that W is closed and bounded in R™.
Let yn be the maximal element of W, Pick y&W whose hth
coordinate is yn. Since y is attainable, there exists an allocation x
in @ with y<U(X). On the other hand, an allocation x+v is
attainable. This implies U(x+v)eW. Since indifference curves of un
have no halflines, we see un(Xn+vi)>unbam)> vn. It contradicts the
fact that vy, is maximal in W, We conclude that G is closed and
unbounded.
Q.E.D

If (A3) holds, however, the economy cannot attain a welfare
arbitrarily close to u.

Lemma 1: The utility allocation u is not in the closure of W under
(A3).

Proof: To the contrary, suppose u is in the closure of W. Then
there exists a sequence {u,} of utility vectors in W that converges to
u. For each n, we choose an allocation x,=@Q that satisfies u,<
Ulxy). By definition of u, we see that u=lim,—.Ulx). Set I({x.)={icI
| Xin || >o0}. We claim that I({X.})=@. Suppose not. Then each {Xi}
is bounded. Without loss of generality, we may assume that {X,}
converges to an allocation x. Then we see u<Ul), which
contradicts (A2).
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Let an=1/2 llxinll. Since X || anxin | =1 for every n, each {anXin}
is bounded so that it has a subsequence converging to a point v
The fact that X Il x|l =1 implies v,=0 for some h&I({x,). On the
other hand, the attainability condition yields X anXxin= an>w;—0 or
>v=0.

Now show that the vector v, is in Apn. Pick any x&X,. Then there
exists a number N such that up(xn,) >unlx) for every n>N. For every
n with e,<1, we have un((l1— an)x+ anXxn)>unlx). Since u, is
continuous, letting n—co yields a relation un(x+uvy)>unlx). Thus the
vector v, is in An. The fact that Yv;=0 contradicts (A3). Therefore u
is not in the closure of W.

Q.E.D

Let P denote a set {peR'| lIpl =1 and pv>0 for all v=EXA}. A
price system in P gives a non-negative value to every commodity
bundle which is u-desirable to an agent. The relative interior of P
consists of prices that do not admit free lunches. For a point v &
W, we denote by P(v) a set of p's in P supporting v. The following
proposition shows that P(y) is not empty for a point y in O(W).

Proposition 2
A utility allocation v €O(W) is supported by a price system p&P. In
particular, any x€Q(v) satisfies px;< pX’l—( vi) for every i€l

Proof: We claim that Zf";lwi%Z?;l)Z?(yi). Otherwise, there exists an
allocation z€@Q satisfying U(z)>» v. This contradicts the weak efficiency
of y. By the separating hyperplane theorem, there exists p’ in R'\
{0} such that p’Z‘.{’;lwigp’Z‘.?;l)Z?(yi). Set p=p’/ Il p’l. It follows from
(A2) that 37, Xi(v)cthe closure of 37, X° (v;). This leads to a
relation p>%, wi<p>™, X vi). For any x€Q(v), we can infer that
p Bnw<p3%, (G+A) and pI 7, wi=pA T x<p&n(va)+ i-nx;) for
every h&l. We conclude that p>il; A;>0 and PXi( vi) > PXh.

Q.E.D

V. Compact Truncations of the Utility Set

To ensure the existence of equilibria, general equilibrium models
have adopted explicitly or implicitly the hypothesis that the utility
set is closed and bounded. This hypothesis is inappropriate to the
present setting because the utility frontier may not be closed as
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shown in Section IIl. To have its non-compact version, we need the
following assumption.

(A4) Suppose that there is {v}, not all zero, with v;EA(w; fin
v;=0. Then for each y=0(cl W) with y<u, there exists h&I such
that Uh%Ah( Vh)-

This condition states that {Ai(v)} is positively semi-independent for
all v which is efficient relative to cl W. Note that utility allocations
in the frontier of cl W need not be attainable. For some ¢>0 in R,
set W(e)={veEW : v<u— ¢}. If indifference curves have no halflines
for all iel, (A4) is necessary for utility allocations in W(e) to be
attainable for each &>0. Suppose that (A4) does not hold. Pick {vi,
not all zero, with v;€A;(w) and >v;=0, and a point v in o(W(¢)).
Let x be an allocation satisfying U(x)= v. Clearly an allocation x+v
is attainable. Since no indifference curves contain a half-line for
every i, we must have u{x+v)>uwl¢) for the non-zero vi. This
contradicts the efficiency of x. The following proposition demonstr-
ates the sufficiency.

Proposition 3
For every ¢>0 in R™, W(¢) is closed in RT under (A4).

Proof: Suppose not. Then for some &3>0, there is v in cl W(e&)\ W
(). Pick a sequence {yn in W(e) such that y,—v. Then for each
n, there exists x, in Q that satisfies v,<Ul¢). Suppose that {x;}
has a subsequence that converges to a point x in Q. Then we see
that y<U(x) and therefore, y=W(¢), which is impossible. Thus we
must have || xi, || —co for some i€I. Set I({x.J)={i€I : |l Xjn || —c0}.

Let 7,=1/3 Il xin || for sufficiently large n. Then we obtain

S ynllxinll =1 for every n and
20 P Xin=21, yaw; — O.

Since {7nxi is bounded for each i, it has a subsequence which
converges to a point v. The set of vectors {v} satisfies the relations
S Jlvill =1 and Sv;=0. Then there exists h<I({x,)) with vn=0.

We claim that vnEAn(vn). We can choose zEX, with un(z)> vn
because yvp<un. For a given number A>0, choose N such that A yn
<1 for all n>N. Then it follows from (A2) that for every n>N,
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Lmun( A 7nXnn+ (1 = A7n)2) >min{un(xn), un(2)}.

Since up is continuous, we obtain un(z+ Avk)> vn, which implies
that vyEAn(vr). This contradicts (A4).
Q.E.D

Suppose i<u. Then the set W is a subset of W(e) for some &3>0.
It follows from Proposition 3 that W is closed under (A4).

Corollary 1

If {i<u, W is closed under (A4). If indifference curves have no
halflines for all i€I, (A4) is necessary and sufficient for W to be
closed.

VI. Near-Boundary Conditions

This section is devoted to formalizing the idea of the near-
boundary condition illustrated in Section III. We take a closed
subset of the utility frontier O(W) by truncating W with a closed
rectangle such that its boundary is sufficiently near the boundary
of O(W). Then we proceed to impose the desired requirement on the
boundary of the truncated utility frontier. The idea is simple as
revealed in Figure 3 but the formal description involves more or
less complex procedures.

For a point ¢>0 in R™, define a set K(¢)={vERT | vi<i— & for
every i€l and set W.=0(W(e&))NOW), By Proposition 3, W, is
closed. Note that if {i<u— e, then W.=0(W).

Let 4 denote the set {s€RT | 3™ ,s;,=1} and for each i, 4; the set
{s€4 | si=0}. For each s/, set r(s)=max(a >0| asscl W) and
fls)=z(s)s, and r.(s)=max{a >0 as€K(e)} and d.(s)= z(s)s. The
following lemma is immediate from Moore (1975).

Lemma 2: The function d. : 4—O(K(¢)) is homeomorphic. And if
wZO0(W), the function f: 4—O0(cl W) is also homeomorphic.

Set Ag=f1(W£) and let f. denote the restriction of f to 4.. By
Lemma 2, f. is a homeomorphism between /. and W.. Let ds.
denote the restriction of d. to 4.. Set T.=ds, ° fgl(Wg). By Lemma
2, dz. is a homeomorphism between 4. and T.. One of the
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A
Uz
ge () T. -«
W
N . (42)
0 i >
FIGURE 3

difficulties with this section is to show that there is a
homeomorphism between T. and O(K(¢)). The homeomorphism will
be constructed to serve well our goal of obtaining the near-boundary
condition.

By Lemma 1, for sufficiently small ¢>0, we see u— ¢ZclW. From
now on, we implicitly assume that this condition is satisfied with
the vector ¢ whenever it is used later. Let B(u— ¢, r.) denote an
open ball centered at u— ¢ with radius r. that does not intersect
clW. Clearly, K(¢)\ W has a nonempty interior in R" for a small
vector £>0. It is clear that uu— ¢ is in the relative interior of T..12
Let t be a point in O(K(¢)) \ {i— ¢}. Since T. is compact, {vER™ | v=
alt—(u— ¢))+u— ¢ for some «>0} always intersects the boundary of
T.. For each t=O(K(¢e)) \{u— e}, define numbers

St)=max{a €R. | alt—(u— &))+u— =T} and
do)=max{a €ER. | alt—([u— ¢))+u— e€O0K( )}

These numbers are well-defined because T. and O(K(e)) are

compact. Clearly, for each t=O(K(¢&)) \ {u— ¢}, we have

2The set T. is considered a subspace of the subspace O(K(¢&)) of R™.
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SOt— (- e)+u— ezT \Blu— e, rJ.

The following lemma shows the continuity of functions § and do.

Lemma 3: The functions § and § from OK(¢)) \{u— ¢} to R, are
continuous.

The proof of Lemma 3 is relegated to the Appendix. The lemma
enables us to show that T. and O(K(¢)) are homeomorphic. Define a
mapping h. : T.—~0(K(¢)) by

olt)
hs(t)—[ 50

u—e if t=u—¢

t—(u— e)+u— ¢ if t=u— ¢

The inverse mapping h. ' takes the form of

do(t)
h0= [ o0

u—cif t=u—¢

t—u—e)+u— e if t=u—¢

The following lemma shows that both h. and h. ! are continuous.
Lemma 4: The function h. and h.' are continuous.

Proof: By Lemma 3, we have only to show the continuity of h, and

h.' at t=u—e. Recall that &(0)/s8t)=>1 for all tEOK(e) \ {u— e}

Thus they are continuous at u— e if limeg- . do(t)/5(t) is finite.
Suppose that &o(tn)/5(t)—cc as ti—u— e. For each n, set v,=

Solt)th— (— €))+u— 7 and wn= 8t)(t.—(U— €))+u— . By definition
each wy, is in T.. Since v,€O0(K(¢)), {va} is bounded. It follows that
wn—[U— &)=(58t)/ So(t))(vn—(— €))—0, which contradicts the fact
that w,&T.\Blu— e, rJ).

Q.E.D

Clearly, h. and h.! are bijective. Therefore h. is a homeomorphism
between T. and O(K( ¢)).

Define a function g. : 4 — W, by g.(s)=f: ° do " o ht e dels);

4% oK) "> TS 4.5 w.
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The function g. is a homeomorphism between 4 and W.. Note that
g.=f if W is closed and WCK(¢) for some ¢>0. Since g. and f are
homeomorphisms, UiLg.(4) and U’ fl4) form the relative boundary
of W, and O(cl W), respectively. For each i, g.(4) comes closer to
Sfl4) as e goes to zero. The set g.(4;) is identified as a component
of the near-boundary set of O(cl W). We impose the boundary
condition on g.(4;) as following.

(A5) There is a point e% in R% such that for each yegs(4) and
each peP(v), (i) either all x€Q(y) satisfy pw;>px; for all i<I or (ii)
all x€Q(v) satisfy pw;<px; for all i<l

By construction, agent i is less favorably treated in the weakly
efficient allocation veEg.(4) than other agents for sufficiently small
¢. This point is clear when W is closed. In this case W coincides
with W, for a small £>0. By definition, the ith component y; of v
is equal to zero. Let p=P(v). Then (i) of (A5) imposes the condition
that agent i be wealthy enough at p to afford his less favorable
position at .

It is easy to see that (A5) always holds if W is closed. We choose
¢>0 such that W coincides with W.. Let v<g.(4) and x=Q(v).
Recall that y;=0. It follows from Proposition 2 that for every pe&
P(v), px;<pX{(0), which implies px;<pw;.

Figure 2 helps understand the role of (A5) for the existence of
equilibrium. Let »* and »” denote the utility allocation at the
points a and b, respectively. Let p.=P(v*) and pr=P( yb), and x* &
Q(v*) and X" =Q(,"). (A5) trivially holds for agent 1 because u;(x{)
=u(w)). (AB) holds for agent 2, too because pbxzb <ppz. As dis-
cussed before, these boundary-like conditions ensure the existence
of equilibrium between a and b along the contract curve.

General cases for which (A5) holds will be discussed in the next
section. The condition (A5) cannot be dispensed with because (Ab)
is necessary for the existence of equilibria in a two-agent economy.
Suppose it is not the case with m=2. Choose a point x in G. First,
assume that plx; —wi)>0 for a price system pEPUX). If pba—wi)
=0, (x, p) is an equilibrium by Walras’ law. Thus we must have
pba —wi)>0. This implies that for each zeG\ (x}, z, satisfies q(z2 —
w2)<0 where q is a price system supporting U(z); otherwise, there
would be some z’€G with g(z’1 —w;)<0 and then, the pushing
process as described in Section III would ensure the existence of
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equilibria between the two points on the contract curve which
represent x and z, respectively. This result contradicts (A5). Similar
arguments apply to the case that p(x; —w;)<0.

VII. The Existence of Competitive Equilibria

A pair (x, p) in QxR with p=0 is a quasi-equilibrium if for every
i, pxi=pw; and pz>px; whenever z> ;x;. The pair (x, p) is an
equilibrium if for every i, pz>px; whenever z > ;x;. We need further
assumptions to verify that a quasi-equilibrium of an economy is in
fact an equilibrium.

If w is weakly efficient, it is easy to see from Proposition 2 that
for some p in P(0), (w, p) is a quasi-equilibrium. Hence we may
assume without loss of generality that w is not weakly efficient.
The main result of the paper is provided as follows.

Theorem 1 : Under the assumptions (Al)-(A5), the economy has a
quasi-equilibrium (p, )P xQ.

The proof of this theorem appears in the Appendix. It is well-
known that a quasi-equilibrium becomes an equilibrium under the
minimum wealth constraint

(M) Every p in P satisfies pw;>inf pX; for all i€l.

VIII. Examples

This section is devoted to the illustrations for which (A5) holds.
The conditions (Al)-(A4) and (M) are assumed to hold throughout
this section. For each i, let W; denote a set {yveW | v;=0} and R;
the set of attainable utility allocations for the restricted economy in
which the agent i is not allowed to trade so that his consumption
is restricted to w; It is clear that RiCW; for every i€l. We make
the following definition.

Definition 2: An agent i is conducive (to the economy) if for any v
€R,;, there is y’€W; satisfying vi> vn for each h=i.

An agent i is conducive if the rest of the economy gets better by
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making him free to trade. In a special case that m=2, every agent
is conducive if and only if w is not weakly efficient. Before going to
examples, we quote the following lemma from Moore (1975, p. 284 ).

Lemma 5: Let y and v’ be points in W satisfying vi> y for all i€l
and y;> y for all i for which »;>0. Then there exists z&€Q which
satisfies U(z)> v.

For a positive vector c=R', set vile)=max{a=R- | a is the ith
element of some veEg.(4) and ple)=minfaeER. |a is the ith
element of some y&g.(4)}. Define a set Gi&)={x=G | Ux)=g.(L)}.
Take a sequence e, — O such that Wen) — v and p(en) — 7z for
some y; and . Set I.={icI| v;>0}. Let Blx, ) (B(r)) denote an
open ball in R' centered at x (zero, respectively) with the radius
r>0.

We assume throughout the following two examples that
indifference curves do not contain a line segment in X;NB(w;, 1) for
some r>0.

Example 1: Assume that for every i, (i) i is conducive to the
economy and (ii) »=0. Then the condition (i) of (A5) is fulfilled.

Proof: First, we show that w;ZG; for each i. To the contrary,
suppose that w;=G;. Let x be an allocation in G with x;=w;. Then
the utility allocation U(x) is in R;. Since i is conducive, we can find
v such that wn>unlxy) for every h=i and »=0. By Lemma 5, there
is X’ in @Q which satisfies U(x)>U(x). This contradicts the weak
efficiency of x.

Since G; is closed and w; is not in G there is r>0 in R' such
that B(w;, r) does not intersect G;. Without loss of generality, we
can assume that r is chosen in such a way that indifference curves
do not contain a line segment in X;NB(wy;, 1. Set gn.=inf {p(wi—2) |
z is the ith element of some x=G(e¢n) and pEP supports x}. Since P
and G(en) are compact, there exist p, P and x&Gl(en) for each n
such that p, supports x, and g, =pn(wi—xin). Let p be a point in P
to which a subsequence of {p.} converges.

Now we show that for some ¢,, (i) of (A5) holds. Consider the
case that {x;} is bounded. Let x’ be the limit point of {x;}. Then it
follows from the condition (i) that wix)=uwi(w;). Since u; is locally
non-satiable by (A2) and uilx,) — wl(w), we can pick v, — 0 such
that wilx) =uiwi+v,). Recalling that p, supports xi, we have pnxin
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<pn(wi+vy). Passing to the limit, we see px’<pw; Since x’&B(w; r),
(A2) implies that for a number o« <(0, 1), w)<ulawi+(1— a)x).
By (M), we can choose z€X; such that p(z—wj)<0. Then there is a
small number B (0, 1) such that wkx)<w((l1— 8)(ewi+(1— a)x)+
B 2)). This implies px’'<p((1— B)( e wi+(1— a)x)+ A 2)). Since pz<pw;,
we have px’<p((1— B)(ewi+(1— a)x)+ Bw)) or px'<pw; implying
that lim inf g,=pw;—x")>0.

We turn to the case that [ x| —c. Let v be a point in R' to
which a subsequence of {xi/ Il xinll} converges. Since ui{xin)>ui(w;)
for every n, v is in Afw). The condition (ii) implies wixn)—w(wj.
Since indifference curves have no line segment around w; we see
wiwi+v)>u(wy). Then for sufficiently large n, there exists 0<y <1
such that w((1— 7)wi+v)+ 7 (z+v))>uix). From now on, we
assume that n is large enough to ensure it. Since p, supports xu,
we have pnxin<pn(w;+v+ 7 (z—wy)). The fact that paxin/ | Xin | ) <pn(w;
+uv+ 7y (z—w))/ I xin | implies pv<O0. Since p(z—w)<0, we see that
lim inf ppxin<lim pp(wi+v+ 7y (z—w))<pw; or lim inf g,>0. Therefore
we conclude that gy>0 for some number N.

Q.E.D

Example 1 is the case where the contract curve or plane meets or
asymptotically meet the indifference curve or plane of agent i
through the initial endowment, This condition would hold in Figure
2 if the contract curve were to come closer and closer to the
indifference curve II and lead to no discrete gap between them in
the limit. Otherwise, Figure 2 belongs to the following class of
Example 2 which extends Example 1 to the case that the gap
between the contract curve and the indifference curve through the
initial endowment need not be zero in the limit.

Example 2: Assume that [.=@ and an economy satisfies the
following conditions; (i) If i€I., then (a) for any vE[w, @] and ve
Ay, a set {wi+ Av | A>0} intersects Xi(1) and (b) for any {x, in G
with U)Egen(d), we have | xinll—co, and (i) if ieI\I., i is
conducive. Then (i) of (A5) is satisfied.

Proof: For any i<I\I., the same argument applies as in Example 1.
In the case that i€l., we can still proceed in a similar way as in
Example 1. Set gn=min{pa(w;—2) | z is the ith element of some x&
G(en) and p<P supports x}. Since P and Gl(ey) are compact, there
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exist p,=P and x,=Gl(ey) for each n such that gn=pn(wi—xin) and pn
supports x,. Without loss of generality, we will assume that p.—p,
wilxin)— v, and X/ Il X Il »v; for some peP, {ER., and vER,
respectively. Clearly, v is in [z, %l
To show that (i) of (A5) holds for some ¢, we have only to prove
that lim inf g,>0. By the same argument as in proving Proposition
3, v; is in A(P). Since JE[m wl, () ensures that there exists A >0
such that wlw;+ Av)>0;. From (M), choose z=X; such that p(z—w)
<0. Then for sufficiently large n, there exists O0< y <1 such that
wl((1 = 7)wi+ Av)+ 7 2+ Av)) =wlwi+ Avi+ 7 (2—w)) >wlxn). From now
on, we assume that n is large enough to ensure the inequality.
Since p, supports x, we have pnxn<pn(wi+ Avi+ 7 (z—wjy)). By the
same argument of Example 1, we have pu;<0. It follows that lim
inf ppxin<lim inf pp(wi+ Avi+ ¥ (z2—w)) <pw:.
Q.E.D

Appendix

Let C be a convex set in R. By I'(C), we denote the recession
cone of C. The cone I'(C) contains O in R' and for two convex
subsets C; and Cs of R, C;CC» implies I'(C1)C I'(C2). The following
results about the recession cone in R' are found in Rockafellar
(1970).

Lemma 1A: Suppose C is a non-empty closed convex set in R.
Then [I'(C) is closed, and it consists of all possible limits of
sequences {x,/An} with x,€C, 1,>0, and A;—>co.

Lemma 1A leads to the following corollary.

Corollary: Let C be a non-empty closed convex set in R. Then (i)
C is bounded if and only if I'(C)={0}. (ii) Let v be a vector in E. If
z+ AvEC for some z&C and all 1>0, then veI'(C).

A concave function has a simple property in terms of the recession
cones of the level sets.

Lemma 2A: Suppose that filx) is a concave function which is
continuous on a convex subset C of R'. Then the level set P ={ye
C | fly)>fIx)} has the same recession cone for all x&C.
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Proop of Lemma 3: First, show the continuity of §. For a point t
€O0(K(g) \ {ii—e}, choose t, — t. We must prove that 6§(t,) — (0.
Let r(t) denote S§(t)(t'—(—&)+u—e for each t'=0(K(e)). Set va=r(tn)
for each n, v=r(t), and v’=1lim v,=1lim §(t)(t— (—&)) + U —e. Since T. is
compact, v’ET.. This implies that lim §(t)< 6(). We have only to
show that lim §(t)> (). If v’ is in the relative boundary of O(K(¢)),
there is i<I that satisfies v;=0 or lim §(t)=({t—4&/([i—¢ —t). On the
other hand, v;>0 produces J()<(u—g)/((t—e)—t). Then we obtains
S >1lim §(¢y). It remains to verify &(0)>1lim §(¢,) in the case that

v’e int OK(e)).

The verification is conducted in the following three steps.

Step 1: We claim that v’ is in O(W). First, show that the point v’
is in W. Suppose that v’ZW. Then for sufficiently large n, v, is in
int O(K(¢)) \ W since v’ is in int O(K(¢)) and W is closed. This implies
that (5t)+ 7)th—[U—e)+u—e € int OK(g)) \ W holds for some small
number 7 >0. Thus the point is in T, which contradicts the
maximality of §(t)). Now show that v’ is in O(W). Suppose that v'e
W\ O(W). Then there is a point v”eW satisfying v”>v’. Recall that
v’ is in int O(K(g)). This implies v”>0. Thus for sufficiently large n,
v”>v">0 must be satisfied. Since the point v, is in int W, we see
vnZ T, which is impossible. Therefore we conclude that v’e0O(W).

Step 2: Show that for a sufficiently small open ball B in R™, (v+
B)NOK(g)Cw'—RHONOK(g). Let 0 be a point in (v+B)NOK(e).
Then there is b&€B which satisfies 0=v+b&0O(K(¢)). Clearly we have
O0<v<u—e. We can rewrite 0 as D=v'—(8(t)—lim () (u—e—1)+b.
Set b’=(6(t)—lim §(tn))(@—e—1t)—b. We must show that b’eR™. If t;=
ui—e, we see that bi=(—&)—0v;>0. If ti<u;—e&, we see that bi=
(8()—lim §(t))[Wi—si—t) —b;>0 since §{)—1lims({t,)>0 and b; is a
sufficiently small number. Those results imply that b’eR™.

Step 3: Since v’E0(W), we have ('—RT)NOK()CWNOK(e). It
follows from Step 2 that (v+B)NOK(g)TWNOK(e). Since (v+B)N
O(K(¢)) is an open neighborhood of v in O(K(¢)), the point v is in
int(WNO(K(e)). This implies that vZO(K(9) \ int (WNO(K(g)). On the
other hand, a set O(K(g) \ W is a subset of OK(g) \int (WNOKI(g))
which is closed. It follows that T.CO(K(e&) \int (WNO(K(¢g)). This
implies v&T,, which is impossible. Therefore we conclude that ()
=lim §(tn).

We remark that the above argument holds for the case that WC
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K(&). But WCKI(¢) implies O(K(g))=T.. Since the function §¢ coincides
with ¢ in this case, the continuity of §o is immediate.
Q.E.D

Proof of Theorem 1: The argument is an adaptation of Magill
(1981) and Brown and Werner's (1995) proof to the case under
consideration. For a point s€ 4, set [1(s)=P(g«(s)). Let p(s) denote a
point in J7(s).

For an allocation x(s)=Q(gx(s)), define a correspondence ® =(®d,
o ®m) 0 4oR™ by

d(s)={(e1,.en)ER™ | & =p(w;—xi(s)), (€I for some pEIl(s)}

Then ®(s) is convex and not empty from Proposition 2. We note
that for every e ®(s), 3", e;=0 since Xic/(w;—xds))=0. We consider
only the case that (i) of (A5) holds (If (ii) of (A5) holds, we have
only to replace e; by e’i=p(xi(s)—w,) for every i€]).

Step 1: We claim that the range of ® is bounded. Since each v
EWgx satisfies y <, we can pick a point XEX; for every i such
that w(®)>max{a=R. | a is the ith element of some y &Wz}. Then
for any s in 4, we obtain w(X)>gi(s). It follows from Proposition 2
that p(s)xi(s)<p(s)X; for some p(s)=II(s), which implies that ®(J) is
bounded above. On the other hand, x(s) satisfies 3", p(s)xi(s)=
p(s)w;. Since p(s)xi(s) is bounded above for all s€ 4, it implies that
p(s)xi(s) is bounded below as well. Consequently, ®(4) is bounded.

Step 2: We will show that ® is upper hemicontinuous. Since the
range of ® is bounded, we may assume that it is a correspondence
from 4 to some compact subset of R' containing ®(4). Let {s,} be
a sequence in 4 conversing to a point s. Choose y, and v in Wgx
such that y,=gs(sn) and y=gs«(s). Since P is compact, there is p&P
such that p(s)) — P. For some point e in R", let e(s,) — e. We will
show that e=p(w;—x(s)) and peIi(s). Recall that wi{x)>uilx(s))> v
for every s. By (A2) we see wlaXi+(1— a)xi(s))>udxi(s)) for every «
in (0, 1) For sufficiently large n, we obtain w(aXi+(1— @)x(s))> vin.
It follows from Proposition 2 that p(sn)(eXi+(1— @)xis))=>p(sn)xils).
Passing to the limit, we have p(aX+(1— a)xi(s))>pw;—e; for all «
in (0, 1), which results in an inequality e;>p(w;—xi(s)). Since X ce;,
we have e;=p(w;—xi(s)) for every i.

It remains to show that p</i(s). Let x’ be an allocation such that
uilx’)> y; for every i. Then for sufficiently large n, we have wx’)>vin.
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It follows from Proposition 2 that p(sy)(Zxi—w)>0. Passing to the
limit, we obtain p(2;x:—w)>0. Let x be an allocation which satis-
fies ui(x)> v for every i. Since preferences are locally non-satiable,
we have p(3ix—w)>0. It implies pe11(s).

Step 3: This step involves an application of Kakutani’'s fixed point
theorem. Let V be a compact and convex set in R™ containing ®(4).
We define a correspondence ¥ =(¥1,-+,¥y) 1 4 XV — 4 XV by

max(sl+t1, 0) maX(Sm"'tm» 0)
Smax(si+t, 00 ™ max(si+t, 0)

(s, 0= (s) |

Then ¥ 1is upper hemicontinuous on XV and ¥(s, t) is
nonempty, convex and compact for all (s, t)€ 4 xV. By Kakutani’'s
fixed point theorem, there is a point (5, )€ 4 XV such that (s, t)e
¥ (s, T). Then we see ti=eiS)=p(E)(wi;—x(s)) for all iel. Suppose that
si=0 for some i<Il. Then it follows from (i) of (A5) that t>0. Since
max(f;, 0)=0, we see {;=0. For other i's with 5;>0, we have max(s;
+1t;, 0)>0, which implies max(s;+%, 0)=s;+T. It yields X7 max(s;+,
0)=1, This results in s;+t=5; which yields t;=0. Therefore, we see
0= ®(s). We come to the conclusion that the pair of x(s)€Q and
p(S)EP is a quasi-equilibrium of the economy.

Q.E.D

(Received 19 June 2001; Revised 18 January 2002)
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