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Given a group of agents to be served in a facility, the 

queueing problem is concerned with finding the order to serve 

agents and the (positive or negative) monetary compensations 

they should receive. As shown in Maniquet (2003), the minimal 
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minimum total waiting cost incurred by its members under the 

assumption that they are served before the non-coalitional 
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other rules discussed in the literature. 
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I. Introduction

Consider a group of agents who must be served in a facility. The 

facility can handle only one agent at a time and agents incur waiting 

costs. The queueing problem is concerned with finding the order to 

serve agents and the (positive or negative) monetary compensations 

they should receive. We assume that an agent’s waiting cost per unit 

of time is constant, but that agents differ in their waiting costs. 

Each agent’s utility is equal to his monetary transfer minus his total 

waiting cost. This problem has been analyzed extensively from the 

incentive perspective (Dolan 1978; Suijs 1996; Mitra 2001, 2002; 

and others). 

Maniquet (2003) proposes to solve the queueing problem by 

applying what is probably the best-known solution for cooperative 

games, the Shapley value (Shapley 1953). To do this, he defines the 

worth of a coalition to be the minimum total waiting cost incurred 

by its members under the optimistic assumption that they are served 

before the non-coalitional members. The resulting rule, the minimal 

transfer rule, selects an efficient queue and transfers to each agent a 

half of his unit waiting cost from each of his predecessors minus a 

half of the unit waiting cost of each of his followers. 

In this paper, we apply another well-known solution for 

cooperative games, the nucleolus (Schmeidler 1969) to the game, and 

identify the resulting rule. Surprisingly, we obtain the same rule: the 

Shapley value and the nucleolus coincide for queueing problems. We 

also investigate the relation between the minimal transfer rule and 

other rules discussed in the literature, the serial cost sharing rule, 

the core, the τ -value, and the Dutta-Ray solution. 
The paper is organized as follows. Section II contains some 

preliminaries and introduces the minimal transfer rule. Section III 

discusses how to solve a queueing problem by applying solutions of 

cooperative games. Section IV establishes our main result that the 

minimal transfer rule coincides with the nucleolus. Section V 

investigates the relations between the minimal transfer rule and 

other rules, and discusses whether the result can be generalized to a 

broader class of problems. Concluding remarks are in Section VI. 



   COINCIDENCE OF THE SHAPLEY VALUE AND THE NUCLEOLUS 225

II. Preliminaries 

Let N≡{1, 2,…, n} be the set of agents. Each agent needs the same 

amount of time to be served. Agent i∈N is characterized by his unit 

waiting cost, θ i≥0, and is assigned a position σ i∈  in a queue and 

a positive or negative transfer ti∈ . The agent who is served first 

incurs no waiting cost. If agent i∈N is served in the σ i
th position, his 

waiting cost is (σ i－1)θ i. Each agent i∈N has a quasi-linear utility 

function: his utility from the assignment (σ i, ti) is given by u(σ i, ti; θ i)

＝ti－(σ i－1)θ i.

A queueing problem is defined as a list q＝(N, θ ) where N is the set 
of agents and θ∈ ＋

N
 is the vector of unit waiting costs. Let QN be the 

class of all problems for N. An allocation for q∈Q is a pair z＝
(σ , t), where for each i∈N, σ i denotes agent i’s position in the queue 

and ti the monetary transfer to him. An allocation is feasible if no 

two agents are assigned the same position and the sum of transfers 

is not positive. Thus, the set of feasible allocations Z (q ) consists of 

all pairs z＝(σ , t) such that for all i, j∈N, i≠j implies σ i≠σ j and 

∑i∈N ti≤0.

Given q＝(N, θ)∈QN, an allocation z＝(σ , t)∈Z (q ) is queue-efficient 

if it minimizes the total waiting costs, that is, for all z’＝(σ ’, t’)∈Z (q ), 

∑i∈N(σ i－1)θ i≤∑i∈N(σ i’－1)θ i. The efficient queue of a problem does 

not depend on the transfers. Moreover, it is unique except for agents 

with equal waiting costs. These agents have to be served consecutively 

but in any order. The set of efficient queues for q∈QN is denoted  

E f f (q ). An allocation z＝(σ , t)∈Z (q ) is budget balanced if ∑i∈N ti＝0. 

An allocation rule, or simply a rule, is a mapping ϕ : QN→ Z (q ), 

which associates with every problem q∈QN a non-empty subset ϕ (q ) 
of feasible allocations. The pair ϕ i(q )＝(σ i, ti) represents i’s position in 

the queue and his transfer in q. Given q＝(N, θ)∈QN, z＝(σ , t)∈Z (q ), 

and i∈N, let Pi(σ ) be the set of agents preceding agent i and Fi(σ ) the 
set of agents following him. 

Now we introduce an important rule. The minimal transfer rule 

(Maniquet 2003) selects an efficient queue and transfers to each 

agent a half of his unit waiting cost from each of his predecessors 

minus a half of the unit waiting cost of each of his followers. 
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Minimal transfer rule, ϕ M: For each q∈QN, 

ϕ M(q )＝{(σM, tM)∈Z (q )|σM∈E f f (q ), and ∀i∈N, 

ti
M＝(σ i

M－1)
θ i
－ ∑

θ j
}.

2 2j∈Fi(σM)

III. Queueing Games 

We analyze queueing problems by applying solutions of cooperative 

games (games, for short). First, we formally describe how queueing 

problems are mapped into games. Let N≡{1, 2,…, n} be the set of 

players. A set S⊆N is a coalition. A game is a real-valued function v 

defined on all coalitions S⊆N satisfying v(∅)＝0. The number v(S) is 

the worth of S. Let Γ N be the class of games with player set N. A 

solution is a function φ: Γ N
→

N
, which associates with every game 

v∈ Γ N a vector φ(v)＝(φi(v))i∈N∈
N. The number φi(v) represents the 

payoff to player i in game v. 

Now we introduce two well-known solutions for games, the Shapley 

value and the nucleolus. The Shapley value assigns to each player a 

payoff equal to a weighted average of his marginal contributions to 

all possible coalitions, with weights being determined by the sizes of 

coalitions. The nucleolus chooses an allocation which minimizes the 

difference between the worth of a coalition and its payoff (in the 

lexicographic way). 

Shapley value, Sh: For each v∈ Γ N and each i∈N, 

Shi(v) ＝ ∑
(|S|－1)!|N\S|!

[v(S)－v(S\{i })].
|N|!S⊆N, S∋i

For each v∈Γ N, let I(v) be the set of imputations x∈ N such that 

∑i∈N xi＝v(N) and for each i∈N, xi≥v({i }). For each x∈I(v), its excess 

vector e(v, x)∈ 2N is defined by setting for each S⊆N, eS(v, x)≡v(S)

－∑i∈S xi. Its S-coordinate eS(v, x) measures the amount by which the 

worth of the coalition S exceeds its payoff at x. For each y∈
2N, let 

y͂∈ 2|N| be obtained by rearranging the coordinates of y in non- 

increasing order. For each pair y, z∈ 2N
, y is lexicographically 

smaller than z if either (i) y͂1＜ z͂1 or (ii) there exists l＞1 such that 
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y͂l＜z͂l. and for all k＜l, y͂k＝z͂k. 

Nucleolus, Nu: For each v∈Γ N such that I(v)≠∅, 

Nu(v)≡{x∈I(v)
for each x ’∈I(v)\{x}, e(v, x) is 

lexicographically smaller than e(v, x ’) }

For each v∈Γ N, the core is the set of imputations at which no 

excess is greater than zero, that is, Core(v)≡{x∈I(v)|for each S⊂N, 

∑i∈S xi≥v(S)}. A game is convex if for each S, T⊆N, v(S)＋v(T)≤v(S∪T)

＋v(S∩T). It is well-known that a convex game has a non-empty core. 

Moreover, the Shapley value and the nucleolus select allocations in 

the core. 

Maniquet (2003) defines the worth of each coalition S⊆N as the 

minimum total waiting cost incurred by its members under the 

assumption that they are served before the non-coalitional members. 

That is, for each S⊆N, its worth vq(S) is defined by setting: 

   vq(S)＝－ ∑ (σ i
*－1)θ i,

i∈S

where σ *∈Eff (S, θS) and θS＝(θ i)i∈S. By applying the Shapley value to 

the game vq＝(vq(S))S⊆N, he shows that the resulting payoff to each 

player is the utility assigned to him by the minimal transfer rule. 

Since the game vq is concave (that is, －vq is convex), I(vq) may be 

empty. Here, we define the worth of a coalition to be the negative of 

Maniquet’s, that is, for each S⊆N, vc(S)≡－vq(S). We call the game vc 

a queueing cost game, and for each S⊆N, vc(S) is the cost of S. 

Obviously, vc is a game in Γ N. Moreover, vc is convex and its 

nucleolus is well-defined. If a game theoretic solution is applied, then 

the resulting payoff to each player is the cost contribution assigned 

to him. It is obvious that it is the negative of the utility assigned to 

him by the solution. 

As shown in Maniquet (2003), the payoff obtained by applying the 

Shapley value to the game vq is the utility assigned by the minimal 

transfer rule to the corresponding queueing problem. 

Theorem M. For each q∈QN and each i∈N, ϕ i
M(q )＝Shi(vq)＝－Shi(vc).
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IV. Coincidence of the Shapley Value and the Nucleolus 

Before we apply another well-known solution for games, the 

nucleolus, to queueing cost games and investigate what 

recommendation it makes, we show that the cost of a coalition with 

more than two members can be expressed as a sum of costs of 

two-person coalitions. 

Lemma 1. For each q∈QN, its queueing cost game vc satisfies 

(i) for each i∈N, vc({ i })＝0; 

(ii) for each S⊆N with |S|≥2, vc(S)＝ ∑ vc(T) and vc(S)≥0.
T⊆S

|T|＝2

Since Lemma 1 can easily be proven from the facts that 

(i) for each i∈N, vc({ i } )＝0 and 

(ii) for each pair i, j∈N, vc({i, j})＝min{θ i, θ j}, 

the detailed proofs are omitted. Instead, we present an example 

showing how the worth of a coalition is calculated. 

Example 1: Let N≡{1, 2, 3, 4} and θ∈ ＋
N with θ1≥θ2≥θ3≥θ4. Then,

      vc({1, 2, 3})＝θ2＋2θ3＝vc({1, 2})＋vc({1, 3})＋vc({2, 3}), 

      vc({1, 2, 4})＝θ2＋2θ4＝vc({1, 2})＋vc({1, 4})＋vc({2, 4}), 

      vc({1, 3, 4})＝θ3＋2θ4＝vc({1, 3})＋vc({1, 4})＋vc({3, 4}), 

      vc({2, 3, 4})＝θ3＋2θ4＝vc({2, 3})＋vc({2, 4})＋vc({3, 4}), 

   vc({1, 2, 3, 4})＝θ2＋2θ3＋3θ4 

                 ＝ vc({1, 2})＋vc({1, 3})＋vc({1, 4}) 

                   ＋vc({2, 3})＋vc({2, 4})＋vc({3, 4}). 

Let Γ ͂N be the class of games satisfying the two conditions of 

Lemma 1. That is, v∈Γ ͂N if and only if for each i∈N, v({i})＝0, and for 

each S⊆N with |S|≥2, v(S)＝ΣT⊆S,|T|＝2 v(T). This class includes, in 

particular, our queueing cost games, and more. Therefore, as shown 

in Deng and Papadimitriou (1994) and van den Nouweland et al. 

(1996), the coincidence between the Shapley value and the nucleolus 

can be established. 
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For completeness, we present an alternative proof using the 

Kohlberg’s (1971) lemma. First, the following lemma can be easily 

proven from our previous observations. 

Lemma 2. For each v∈Γ N͂ and each i∈N, Shi(v)＝
1 ∑ v(S).
2 S⊆N,S∋i,|S|＝2

The Shapley value of the queueing cost game can be calculated by 

using only the worths of the two-person coalitions: It assigns to each 

agent a half of the sum of his contributions on all two person 

coalitions. We note that its computational burden is significantly 

reduced since we need to know n(n－1)/2 numbers instead of 2
n－1 

numbers. 

Now we show that at the Shapley value allocation, the excess of a 

coalition equals to the excess of its complementary coalition. 

Lemma 3. For each v∈Γ ͂N and each i∈N, if 

xi≡
1
∑ v(S),

2 S⊆N,
S∋i,

|S|＝2

then, for each S⊆N, 

v(S)－ ∑ xi ＝ v(N\S )－ ∑ xi.
i∈S i∈N\S

Proof: Let v∈Γ N͂ and S⊂N. If 1＜|S|＜|N|, then 

v(S)－ ∑ xi ＝ ∑ v(T) － ∑
1
∑ v(T)＝－

1
∑ v({i, j}),

2 2i∈S T⊆S
|T|＝2

i∈S T⊆N,
T∋i

|T|＝2

{i, j}⊆N 
i∈S

j∈N\S

and 

v(N\S )－ ∑ xj ＝ ∑ v(T )－ ∑
1
∑ v(T) ＝－

1
∑ v({i, j}).

2 2j∈N\S T⊆N\S
|T|＝2

i∈N\S T⊆N,
T∋j

|T|＝2

{i, j}⊆N 
i∈S

j∈N\S
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If S＝N\{ j}, then 

v(S)－ ∑xi＝ ∑ v(T)－ ∑
1
∑ v(T)

2i∈S T⊆S
|T|＝2

i∈S T⊆N,
T∋i

|T|＝2

＝－
1
∑ v({i, j})

2 {i, j}⊆N 
i∈S

                        ＝v({ j})－xj, 

the desired conclusion.                                            ■

For each v : 2
N→ , each x∈ N with ∑i∈N xi＝v(N), and each α∈ , 

let 

Sα (v, x)≡{S∈2N|S≠∅ and v(S)－∑xi≥α }.

                                             i∈S

A collection B⊆2N of coalitions is strictly balanced on N if there 

exists a list (δS)S∈B of positive weights such that for each i∈N, 

∑δS＝1.                            
S∈B

                             S∋i

Lemma 4. (Kohlberg 1971) For each v∈Γ and each x∈I(v), 

x＝Nu(v)⇔

for each α∈  with Sα (v, x)≠∅,
there exists S⊆{{i }|i∈N and v({i})－xi＝0}

such that Sα (v, x)∪S is strictly balanced on N.

We are ready to state and prove our main result. 

Theorem 1. For each v∈Γ ͂N, 
Sh(v)＝Nu(v). 

Proof: By Lemma 2, for each v∈Γ ͂N and each i∈N, 



   COINCIDENCE OF THE SHAPLEY VALUE AND THE NUCLEOLUS 231

Shi(v)＝
1
∑ v(S).

2 S⊆N
S∋i

|S|＝2

Let α∈  be such that Sα (v, Sh(v))≠∅. Let S∈Sα (v, Sh(v)). Since by 

Lemma 3, 

v(N\S)－ ∑ Shi(v)＝v(S)－ ∑ Shi(v),

                        i∈N\S
                      

i∈S

N\S∈Sα (v, Sh(v)). Thus, Sα (v, Sh(v)) is strictly balanced on N. The 

desired conclusion follows from Lemma 4.                         ■

V. Discussion 

In this section, we further investigate the relations between the 

minimal transfer rule and other rules proposed in the literature. 

Also, we discuss whether our results can be extended to a broader 

class of problems. 

A. The Serial Cost Sharing Rule 

As shown in Moulin (2004), the minimal transfer rule coincides 

with the serial cost sharing rule for scheduling problems. The same 

observation can be made for queueing problems. In fact, its proof 

can be easily obtained by checking our simple formula for the 

Shapley value given in Lemma 2. To further simplify the argument, 

let (N, θ)∈QN be such that θ1≥θ2≥…≥θn. From Lemma 2, Shn(vc)＝

{(n－1)/2}θn, Shn－1(vc)＝{(n－2)/2}θn－1＋(1/2)θn, and so on. 

To calculate the payoff assigned by the serial cost sharing rule, we 

need to assume that all agents have θn. Then, the total cost 

{1＋…＋(n－1)}θn is divided equally among all agents, and in 

particular agent n receives {(n－1)/2}θn. Now suppose that agent n 

leaves and the remaining agent have the unit waiting cost θn－1. 

Then, the total cost goes up by {1＋…＋(n－2)}(θn－1－θn), and this 

increase is shared equally among the remaining (n－1) agents, and in 

particular agent n－1 receives (n－2)/2(θn－1－θn). Since he was 

originally assigned {(n－1)/2}θn, his final assignment is {(n－2)/2}θn－1

＋(1/2)θn. And so on. It is easy to check that this is exactly the 
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amount assigned by the simple formula of the Shapley value. In our 

queueing cost problem, the serial cost sharing and the minimal 

transfer rule make the same recommendation. 

B. The Core 

For a convex game, both the Shapley value and the nucleolus 

select an allocation in the core. It is natural to ask about the 

structure of the core for queueing cost games. In particular, one 

might conjecture that the coincidence between the two solutions 

comes from the fact that the core is a singleton. However, as shown 

in Figure 1 for a 3-agent problem with N≡{1, 2, 3} and θ1≥θ2≥θ3, 

this is not the case. Its core is pretty large. However, it has a rather 

symmetric structure. This is the central reason why the two 

solutions coincide. 

C. The τ-value 

For each v∈ΓN and each i∈N, let Mi(v)≡v(N)－v(N\{i}) and 

mi(v)≡v({i }). Then, the τ-value (Tijs 1987) selects the maximal feasible 

allocation on the line connecting M(v)≡(Mi(v))i∈N and m(v)≡(mi(v))i∈N.

τ -value, τ : For each convex game v, 

τ (v)≡λM(v)＋(1－λ )m(v), 

where λ∈[0, 1] is chosen so as to satisfy 

∑ [λ (v(N)－v(N\{ j }))＋(1－λ )v({ j })]＝v(N).

             
j∈N

For a queueing cost game v, m(v)＝0. Moreover, it is easy to see 

that for each j∈N, v(N)－v(N\{ j })＝∑S∋j,|S|＝2 v(S) and that λ＝1/2. 

Thus, the τ -value coincides with the Shapley value, and therefore, 
the nucleolus for queueing problems. 

D. The Dutta-Ray Solution 

Next we investigate the Dutta-Ray solution (Dutta and Ray 1989). 

In general, this solution selects a core allocation which maximizes 

the Lorenz ordering. Since our games are convex, the solution can be 
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Note: The core of a queueing cost game may not be completely symmetric, 

but it is sufficiently symmetric to guarantee Sh(vc)＝Nu(vc). In the 

figure, the core of a three-agent queueing cost game is the interior 

(and the boundary) of ABCDEF, and it is symmetric with respect to 

lines l and m.

FIGURE 1

THE CORE OF A QUEUEING COST GAME

defined as follows.

Dutta-Ray solution, DR: For each convex game v for N, DR(v)∈
N is 

the payoff vector derived by the following algorithm: 

Step 1. Let N1≡N and v1≡v. Find the unique coalition S1∈2N1\{∅} 
such that for each S∈2N1\{0, S1}, (i) v1(S1)/|S1|≥v1(S)/|S| and 

(ii) if v1(S1)/|S1|＝v1(S)/|S|, then |S1|＞|S|.1 For each i∈S1, let 

DRi(v)≡v1(S1)/|S1|. If S1≠N1, proceed to the next step.  

Step k. Suppose that Nk－1∈2N\{∅}, vk－1∈ΓNk－1 with vk－1(∅)＝0, and 

Sk－1∈ 2Nk－1\ {∅, Nk－1} have been defined. Let Nk≡Nk－1\Sk－1 and 

1
The uniqueness of S1 is guaranteed by the convexity of v1.
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vk∈ ΓNk be defined by setting for each S∈2Nk, 

vk(S)≡vk－1(S∪Sk－1)－vk－1(Sk－1). 

Find the unique coalition Sk∈2Nk\{∅} such that for each 

S∈2
Nk－1\{∅, Sk}, (i) vk(Sk)/|Sk|≥vk(S)/|S| and (ii) if vk(Sk)/|Sk|＝

vk(S)/|S|, then |Sk|＞|S|.2 For each i∈Sk, let DRi(v)≡vk(Sk)/|Sk|. 

If Sk≠Nk, proceed to the next step. 

When applied to queueing cost games, the Dutta-Ray solution 

selects an allocation in the core, different from the Shapley value 

allocation. 

Example 2: Let N≡{1, 2, 3}, θ≡(6, 5, 1), and q≡(N, θ). Then 
vc({1, 2})＝5, vc({1, 3})＝1, vc({2, 3})＝1, and vc({1, 2, 3})＝7. Thus, 

Sh(vc)＝(3, 3, 1) and DR(vc)＝(5/2, 5/2, 2).                         □

E. The Maximal Transfer Rule 

The maximal transfer rule (Chun 2006a, b) selects an efficient 

queue and transfers to each agent a half of the unit waiting cost of 

each of his predecessors minus a half of his waiting cost to each of 

his followers. 

Maximal transfer rule, ϕX: For all q∈QN,

ϕ X(q )＝{(σX, tX)∈ Z (q )|σX∈E f f (q ), and ∀i∈N, 

       

ti
X＝ ∑

θ j
－(|N|－σ i

X)
θ i

}.
2 2j∈Pi(σX)

As shown in Chun (2006a), if the worth of a coalition is defined as 

the minimum total waiting cost incurred by its members under the 

assumption that they are served after the non-coalitional members, 

this rule assigns the same utility as the Shapley value of the 

corresponding game. Moreover, the coincidence between the Shapley 

value and the nucleolus can be obtained for this class of games. 

Although these games do not satisfy two conditions of Lemma 2, 

2 If v is convex, then vk is convex. Again, the uniqueness of Sk is 

guaranteed by the convexity of vk.
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their zero-normalized versions obtained by defining for each S⊆N, 

v ̅(S)＝v(S)－∑i∈S v({i}), satisfy them. The proof can be completed by 

using the fact that both the Shapley value and the nucleolus satisfy 

zero-independence, requiring that adding a constant to the worth of 

coalitions containing i should affect his payoff by the constant. 

Also, it can be shown that the maximal transfer rule coincides 

with the decreasing serial cost sharing rule (de Frutos 1998) for 

queueing and scheduling problems. 

F. Sequencing Problems 

A sequencing problem (Suijs 1996)3 is a list (N, r, θ), where N is 
the set of agents, r≡(ri)i∈N is the vector representing the service time 

required by agents, and θ≡(θ i)i∈N is the vector of unit waiting costs. 

A queueing problem is obtained by setting for each i∈N, ri＝1, and a 

scheduling problem by setting for each i∈N, θ i＝1. It is interesting to 

note that if a sequencing problem is transformed to a cost game, 

then it satisfies two conditions identified in Lemma 2. Therefore, the 

game belongs to Γ ͂N, and therefore, our coincidence result still holds. 

VI. Concluding Remarks 

In this paper, we show that the Shapley value and the nucleolus 

coincide on the domain of queueing cost games (also, sequencing 

cost games). However, our conditions are sufficient, but not 

necessary. It would be interesting to find a necessary condition to 

guarantee the coincidence of these two solutions. We leave this as 

our next research agenda. 

(Received 9 October 2006; Revised 27 February 2007)
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