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Hamilton’s (2001) flexible nonlinear inference is not valid with 

endogenous explanatory variables. Hence, this paper proposes a 

framework to approach endogeneity problems in the flexible non- 

linear inference. We develop two estimation procedures, namely, joint 

estimation and two-step estimation procedures. The parameters in 

both models can be estimated by maximum likelihood or numerical 

Bayesian method. Our approach can be used in handling endogeneity 

and nonlinearity in the oil-macro relationship or in the monetary 

policy rule.
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I. Introduction

A natural approach to estimate a typical economic model is by using 

the linear relationship between relevant variables. Hamilton (2001) reveals 

that nonlinear models may improve forecasts and provide economic in- 

sights. Generally, parametric or nonparametric approaches are employed 

when estimating nonlinear models. A crucial aspect in using parametric 

approaches is deciding which parametric model to use. Meanwhile, 
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popular nonparametric approaches sacrifice many of the benefits as- 

sociated with parametric methods, such as the provision of a system for 

adjusting a bandwidth or series expansion length, improving unclear 

interpretation of inferences, and convenient hypothesis testing.

To develop a parametric approach along with a nonparametric philo- 

sophy, Hamilton (2001) proposes a new framework that can determine 

whether a given relationship is nonlinear, what the nonlinear function 

is, and whether a particular model can adequately describe it. He 

studies the expectation of a scalar yt conditional on an observed vector 

xt, E(yt|xt)＝μ (xt), where a regression of the form is yt＝μ (xt)＋ε t and the 

functional form of μ (․) is unknown. The paper denotes μ (․) as the 

outcome of a random process and introduces a stationary random field 

m(․), whose realizations can represent a broad class of possible forms 

for μ (․). The proposed approach considers the parameters that char- 

acterize the relationship between a given realization of m(․) and the 

particular value of μ (․) for a given sample as population parameters to 

be estimated by maximum likelihood or Bayesian method.

Hamilton’s (2001) parametric approach to flexible nonlinear inference, 

however, is not valid in the presence of endogenous explanatory vari- 

ables, where xt is correlated with ε t. This endogeneity of explanatory 

variables is frequently observed in macroeconometric models and results 

in inconsistent estimates of parameters. Recently, Kim (2004, 2009) pro- 

posed a joint estimation procedure and a two-step Maximum Likelihood 

Estimation (MLE) procedure to solve the endogeneity in Markov-switching 

regression models; these procedures are based on the control function 

approach (Heckman, and Vytlacil 1998; Heckman, and Navarro 2004; 

Altonji, and Matzkin 2005; Florens et al. 2007). Kim, and Nelson (2006) 

illustrate that the two-step MLE procedure is expedient in the estimation 

of a forward-looking monetary policy rule in the U.S.A.

This paper aims to develop a flexible nonlinear inference with endo- 

genous regressors in the framework of  Hamilton’s methodology (2001). 

In this new approach, we apply the control function approach to 

Hamilton’s (2001) flexible nonlinear framework. An appropriate trans- 

formation of the model allows us to employ Hamilton’s (2001) approach 

directly. To estimate a flexible nonlinear model with endogenous regres- 

sors, both joint and two-step estimation procedures are considered in 

this paper. The parameters in these procedures are estimated by maxi- 

mum likelihood or numerical Bayesian method.

The rest of the paper is organized into the following sections. Section 

II discusses a nonlinear form with endogenous explanatory variables, 
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section III describes the joint estimation procedure, section IV derives 

the two-step estimation procedure, and section V concludes the paper.

II. Nonlinear form with endogenous explanatory variables

Hamilton (2001) proposes a new framework that combines the advan- 

tages of non-parametric and parametric methods. Although the procedure 

does not assume any specific functional form for the conditional mean 

function, several parameters are used to characterize this function, and 

these parameters are estimated by maximum likelihood or Bayesian 

method. Inference is based on classical econometric theory.

Consider the general nonlinear regression model

εμ ε ε σ+ 2= ( ) , ~ . . . (0, ),t t t ty i i d Nx                  (1)

where yt is a scalar dependent variable, xt is k-dimensional vector of 

explanatory variables, and ε t is an error term with mean zero that is 

independent of xt and of lagged values yt－j, xt－j ( j＝1, 2, ...). Equation 

(1) allows a subset of variables xt, which ones tend to assume linearity, 

thereby gaining efficiency. The form of the function μ (․) is unknown, 

and we seek to represent it with a flexible class. Following Hamilton 

(2001), we view this function as the outcome of a random field,1 that is, 

if τ denotes an arbitrary, nonstochastic k-dimensional vector, then the 

value of the function μ (․) evaluated at τ is treated as a Gaussian 

random variable with a mean value that equal to the linear component 

α 0＋α ’τ and variance λ2, where α 0, α , and λ  are population parameters 

to be estimated.2 In the special case of λ＝0, μ (xt) is fixed, and 

Equation (1) becomes the usual linear regression model. In general, the 

parameter λ  measures the overall extent of nonlinearity.

1 A random field is a generalization of a stochastic process, such that the 

underlying parameter does not have to be a simple real or integer valued “time,” 

but instead, can be multidimensional vectors or points on a certain manifold. At 

its most basic and discrete case, a random field is a list of a random numbers 

whose indices are mapped onto a space (of n dimensions). In its most basic 

form, adjacent values (i.e., values with adjacent indices) do not differ as greatly 

as values that are further apart, which is an example of a covariance structure. 

Numerous types of this structure may be modeled in a random field, which is 

known as a “function valued” random variable. (Vanmarcke 2010, Wikipedia)
2 We do not know the functional form of μ (․); thus, the final outcome μ (τ ) 

evaluated at the realized value τ can be treated as a random variable.
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In the random field μ (․), ones need to know how the random variable 

μ (τ1) is correlated with μ (τ2), for τ1 and τ2 arbitrary k-dimensional 

vectors. Hamilton (2001) parameterizes this correlation based on the 

distance measure hst＝(1/2)[∑k
i＝1gi

2(xis－xit)
2]1/2, where xit denotes the ith 

element of the vector xt and g1, g2, ..., gk are k additional parameters to 

be estimated. Hamilton proposes that μ (xs) should be uncorrelated with 

μ (xt) if xs is sufficiently far away from xt. To be precise,

0 0{[ ( ) ][ ( ) ]} 0 if 1.s s t t stE hμ α μ α′ ′− − − − = >x x x x  α α         (2)

However, when 0≤hst≤1, this correlation should increase as hst de- 

creases, with the correlation reaching unity as hst becomes zero. For 

example, in the case of two explanatory variables, k＝2 the correlation 

is assumed to be given by

μ μ ≤ ≤2( ( ), ( )) = ( ) if 0 1,s t st stCorr H h hx x              (3)

where 

π −− − +2 1/2 1
2( ) =1 (2/ )[ (1 ) ( )].sinst st st stH h h h h            (4)

In the presence of nonlinearity, Hamilton writes Equation (1) as

α λ ε′+ + +0= ( )t t t ty mx xα                    (5)

α α′+ +0= ,t tux                           (6)

where m(․) is the realization of a scalar-valued Gaussian random field 

with mean zero and unit variance and covariance function given by 

Equations (2) to (4). Nonlinearity of the functional form μ (․) implies a 

correlation between ut and us, which are the residuals of the linear 

specification, whenever xt and xs are close together.

Assuming that the regression disturbance ε t is i.i.d. N(0, σ ε
2), the 

composite disturbance ut＝λm(xt)＋ε t is also Gaussian. With independence 

between xt’ and ε t, this specification implies a GLS regression model of 

the form given by

β σ+ 2
0| ~ ( , ),TNy X X P I                     (7)
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where y＝(y1, y2, ..., yT)’, X is the T×(k＋1) matrix with th row (1, xt’)’, β 

is the (1＋k)-dimensional vector (α 0, α’)’, and P0 is a (T×T ) matrix whose 

row s, column t element is given by λ2Hk(hst)δhst＜1] with hst defined above. 

The function Hk(.) is specified in Equation (4) if k＝2. The indicator 

function δ [.] is unity when the condition [.] holds, and zero otherwise.

In addition to the linear regression parameters (α 0, α) and σ 2 the par- 

ameters to be estimated are the variances of the nonlinear regression 

error, λ2, which governs the overall importance of the nonlinear com- 

ponent, and the parameters (g1, g2, ..., gk) determine the variability of 

the nonlinear component with respect to each explanatory variable in 

xt. As the aforementioned discussion implies, estimation and inference 

can be achieved by a GLS Gaussian regression or numerical Bayesian 

method.

Hamilton’s (2001) methodology for the estimation of Equation (7), 

however, is not valid when the regressors xt are endogenous. To resolve 

this issue, we consider the following nonlinear regression model in which 

the explanatory variables are correlated with the disturbance term:

2= ( ) , ~ . . . (0, ),t t t ty i i d N εμ ε ε σ+x                   (8)

, ~ . . . (0, ),t t t t vi i d Nδ ′= + Σx z v v                  (9)

,( , ) ,t t vCov εε =v C                         (10)

where yt is a scalar dependent variable, xt is a (k×1) vector of explana- 

tory variables correlated with ε t, zt is a (r×1) vector of instrumental 

variables with r≥k, δ is a (r×k) coefficient matrix, Cv,ε is a constant 

correlation vector, and vt is a (k×1) vector.

To employ Hamilton’s (2001) methodology in the estimation of Equa- 

tions (8) and (9), we must transform the model so that the explanatory 

variables and the disturbance terms are uncorrelated. As in Kim (2004, 

2009), the key to the approach is the Cholesky decomposition of the 

variance-covariance matrix of [vt
*’ε t]’, where vt

*＝∑v
－1/2vt to rewrite 

[vt
*’ε t]’ as a function of independent shocks, which is given by

, , ,

=
(1 )

k k tt

tt v v v
w

ε ε ε ε εε ρ σ ρ ρ σ

∗ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

I 0 uv

(11)

. . . , ,
10

t k kk
'

t k

i i d N
w

⎛ ⎞⎡ ⎤ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠

u I 00
0

~
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where 0k is (k×1) zero vector, ρ v,ε is a (k×1) vector of correlation coef- 

ficients, Ik is a (k×k) identity matrix, and ut and wt are independent 

standard normal random variables. From Equation (11), we can respec- 

tively rewrite Equations (8) and (9) as 

= ( ) ,t t t ty eμ γ ∗ ∗′+ +x v                      (12)

1/2= ,t t v tδ ′ + Σx z u                         (13)

                          
2. . . (0, ),t e

e i i d N σ∗
∗~

where γ＝ , , ,, = (1 ) ,v t v v te wε ε ε ε ερ σ ρ ρ σ∗ ′− 2 2
, ,= (1 ) ,v ve ε ε εσ ρ ρ σ∗

′− and =t t
∗v u . 

Solving Equation (13) for ut and substituting the outcome with Equation 

(12) results in the transformation of Equation (8) given by

1/2= ( ) [Σ ( )] ,t t v t t ty eμ δ γ− ∗′ ′+ − +x x z                 (14)

= ( ) ( ) ,t t t teμ δ γ ∗ ∗′ ′+ − +x x z                      (15)

= ( ) ,t t teμ γ ∗ ∗′+ +x v                             (16)

where γ *＝∑v

－1/2γ. In Equation (16), the new disturbance term et
* is 

independent of either xt or vt. In addition, [∑v

－1/2(xt－δ ’zt)]’γ(＝γ*’vt) 

works as a bias correction term, and we can apply Hamilton’s (2001) 

methodology to have a flexible nonlinear inference. Following Hamilton 

(2001), the systems of Equations (12) and (13) can be respectively 

rewritten as

= ( ) ,t t t ty eμ γ ∗ ∗′+ +x v                            (17)

0= ( ) ,t t t tm eα α γ λ∗ ∗′′+ + + +x v x                (18)

= ,t t tδ ′ +x z v                                    (19)

                  *
* 2~ . . . (0, ), ~ . . . ( , Σ )t t k vee i i d N i i d Nσ v o

where vt＝(xt－δ ’zt), and μ (xt)＝α 0＋α ’xt＋λm(xt). In Equation (18), xt, vt 

and m(xt) are independent of et
*, and et

* is i.i.d.N(0, σ e
2
*), thus we can 

apply Hamilton’s (2001) procedure to the equation conditional on xt and 

(xt－δ ’zt). The result from the estimation of Equation (11) using Hamilton’s 
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(2001) procedure is not μ (x), which is the function of interest, instead it 

is μ (x)＋(xt－δ ’zt)’γ *. To obtain the estimate of μ (x) we need to take out 

the bias correction term.

In estimating the model described in Equations (18) and (19), both 

joint and two-step estimation are considered in this paper.

III. Joint estimation procedure: FIML

The disturbance terms in Equations (18) and (19) are independent, 

providing a basis to construct the log likelihood function for the joint 

estimation of the models.

We define that y＝(y1 y2 ... yT)’, β＝(α 0 α ’γ *’)’, X is (T ×(2k＋1)) matrix 

with tth row (1 xt’ vt’), x＝(x1’, ..., xT’)’, Z＝(Z1 Z2 ... ZT)’, where Zt＝Ik⊗z̃t, z̃t

＝(1zt’)’ and Ik is (k × k) identity matrix. Moreover, define u＝(u’1 u’2 ...

u’T)’, where ui for i＝1, 2, ..., T, is (k ×1) vector, δ＝(δ1’ ... δk’)’, where δ i, 

for i＝1, ..., k, is [(r＋1)×1] vector, and V＝IT ⊗∑v, where Ik is (k × k) 

identity matrix. The regression error et
* in Equation (17) is assumed to 

be i.i.d.N(0, σ e
2
*), and (xt’, zt’) are strictly exogenous; thus, the specifica- 

tions of Equations (18) and (19) imply a GLS regression model of the 

forms

*
2

0| ~ ( , ),TeN σ+y X Xβ P I                      (20)

| ~ ( , ),Nx Z Zδ V                          (21)

where

2
0 , =1,2,...,= [ ( )] ,k ij i j TH hλP                      (22)

1/ 2(1/ 2){[ ( )] '[ ( )]} ,ij i j i jh = ⊕ − ⊕ −g x x g x x            (23)

where ⊕ denotes an element-by-element multiplication.

We define the parameters associated with Equations (18) and (19) as

1 2= [  ] ,θ θ θ′ ′ ′                            (24)

where θ1＝[α 0, α ’, λ , g’, γ *’, σ e
2
*]’ is the vector of parameters associated 

with Equation (18), and θ2＝[δ ’, vech(∑v)’]’ is the vector of parameters 

associated with Equation (19). For consistent and efficient joint estimation 
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of Equations (18) and (19), we maximize the following log likelihood 

function with respect to θ :

                   ( ) ln ( , : )L fθ θ= y X
                       (25)

  2= ln ( | ) ln ( ),f fθ θ+y X; x;

where

      
2

0
1ln ( | ; ) = ln(2 ) ln| |

2 2 Te

Tf θ π σ ∗− − +y X P I
                (26)

    
2 1

0
1( )( ) ( ) ( ) ,
2 Te

β σ β−
∗

⎧ ⎫′− − − + −⎨ ⎬
⎩ ⎭

y X P I y X

1
2

1 1ln ( ; ) = ln(2 ) ln ( )( ) ( ) .
2 2 2
Tkf θ π δ δ−⎧ ⎫′− − − − − −⎨ ⎬

⎩ ⎭
x V x Z V x Z

   (27)

Define ζ≡λ/σ e* to be the ratio of the standard deviation of the 

nonlinear component λm(xt) to that of the regression residual e*. As in 

Hamilton (2001), a convenient reparameterization can allow easier esti- 

mation structure of Equations (20)－(23). Let θ1＝(θ1’1, θ1’2)’, where θ11＝

(α 0, α ’, γ *’, σ e
2
*)’ contains the parameters from the linear part of Equation 

(18) and θ12＝(g’, ζ )’ the nonlinear parameters. Let H(g) denote the (T ×

T ) matrix whose (t, s) element is Hk(hts(g)) and

2
12( ; ) ( ) ,Tθ ζ≡ +W x H g I                        (28)

where for each pair of observations t and s, x̃t＝g⊕xt and hts(g)＝(1/2)[(x̃t

－x̃s)’(x̃t－x̃s)]
1/2. From Equation (26), the log likelihood can be written

    
2

12 2 12
1ln ( | ; , ) = ln(2 ) ln( ) ln| ( ; )|

2 2 2e

T Tf θ θ π σ θ∗− − −y X W x
               (29)

    

1
122

1( )( ) ( ; ) ( ) .
2

e

β θ β
σ

−

∗

⎧ ⎫⎪ ⎪′− − − −⎨ ⎬
⎪ ⎪⎩ ⎭

y X W x y X

For given θ12, θ2, the value of θ11 that maximizes Equation (29) can be 

calculated analytically as
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11 1
12 2 12 12( , ) = ( ; ) ( ; ) ,β θ θ θ θ

−− −⎡ ⎤ ⎡ ⎤′ ′⎣ ⎦ ⎣ ⎦X W x X X W x y             (30)

2 1
12 2 12 2 12 12 2( , ) = ( , ) ( ; ) ( , ) / .

e
Tσ θ θ β θ θ θ β θ θ−

∗
′⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦y X W x y X      (31)

Equations (30) and (31) allow us to concentrate the log likelihood in 

Equation (29) as

     
12 1 11 12 12 2

=1
( ; , ) = ln ( | , ; ( ), , )

T

t t t
t

L f yθ θ θ θ θ−∑y X X Y
     (32)

                
2

12
1= ln(2 ) ln( ) ln| ( ; )| ( /2),

2 2 2e

T T Tπ σ θ∗− − − −W x

where Yt＝(y1, Xt’, yt－1, ..., y1, X1’)’ denotes information observed through 

date t. Now, the numerically maximizing Equations (27) and (32) result 

in the MLE θ ̂2 and θ ̂12, which from Equations (30) and (31), gives θ ̂11. 

Therefore, the joint estimation procedure is based on Equations (27), 

(30), (31), and (32), and delivers the most asymptotically efficient esti- 

mator.

IV. Two-step estimation procedure

Although the joint estimation procedure can deliver the most asymp- 

totically efficient estimator, this procedure may be subject to the curse 

of dimensionality as highlighted by Kim (2009). Hence, a reasonable 

alternative is a two-step estimation procedure. Here, θ1 is the vector of 

parameters associated with Equation (18), and θ2 is the vector of para- 

meters associated with Equation (19). To obtain an insight into the two- 

step estimation of the model given by Equations (18) and (19), consider 

the log likelihood function in Equation (25). The basic idea for a two- 

step procedure is to estimate θ2 and θ1 by maximizing ln f(x; θ2) and ln

f(y|x; θ )＝ln f(y|X; θ1, θ ̂2), respectively, depending on the estimates for 

θ2. The associated cost of a two-step procedure, however, is the potential 

loss of efficiency. We summarize the two-step estimation procedure below. 

Step 1:

In the first step, the equation to be estimated as
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=t t tδ ′ +x z v                         (33)

                            ~ . . . ( , ).t k vi i d N Σv 0

Equation (27) is the log likelihood function associated with Equation 

(33); thus, the log likelihood function is maximized with respect to θ2 

and then, we obtain the consistent estimates for θ ̂2＝[δ ̂’, vech(Σ̂v)’]’.

Step 2:

In the second step, we estimate Equation (18) conditional on θ ̂2, which 

is obtained from Step 1. The equation to be estimated is

          0 ˆ= ( )t t t t ty m eα γ λ∗′′+ + + +x v xα

0
ˆ= [( )] ( )t t t t tm eα γ δ λ∗′′ ′+ + − + +x x z xα               (34)

            
2. . . (0, ),t ee i i d N σ~

where ˆˆ ˆ= ( ) , = .t t t t t t te e γ δ∗ ∗′ ′+ − −v v v x z

The log likelihood function to be maximized is given by

       
2

1 2 0
1ˆln ( | ; , ) = (2 ) | |

2 2 e T
Tf θ θ π σ− − +y X P I

                   (35)

                       
2 1

0
1( )( X ) ( ) ( ) ,
2 e Tβ σ β−⎧ ⎫′− − − + −⎨ ⎬

⎩ ⎭
y P I y X

where X̃＝(T × (2k＋1)) is the matrix with tth row (1 xt’ v̂t’).
As the case of the convenient reparameterization in the joint estimation 

procedure, we estimate Equation (34) with a convenient reparameteriz- 

ation. Let θ1
*＝(θ1

*
1’, θ1’2)’, where θ1

*
1＝(α 0, α ’, γ *’, σ e

2)’ contains the param- 

eters from the linear part of Equation (34) and θ12＝(g’, ζ )’ is the non- 

linear parameters. From Equation (29), the log likelihood conditional on 

θ ̂2 can be written as

     
2

12 2 12
1ˆln ( | ; , ) = ln(2 ) ln( ) ln| ( ; )|

2 2 2e
T Tf θ θ π σ θ− − −y X W x

           (36)

                        

1
122

1( )( ) ( ; ) ( ) .
2 e

β θ β
σ

−⎧ ⎫⎪ ⎪′− − − −⎨ ⎬
⎪ ⎪⎩ ⎭

y X W x y X
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For given θ12, θ ̂2, the value of θ11 that maximizes Equation (36) can 

be calculated analytically as

11 1
12 2 12 12

ˆ( , ) = ( ; ) ( ; ) ,β θ θ θ θ
−− −⎡ ⎤ ⎡ ⎤′ ′⎣ ⎦ ⎣ ⎦X W x X X W x y            (37)

2 1
12 2 12 2 12 12 2

ˆ ˆ( , ) = ( , ) ( ; ) ( , ) / .e Tσ θ θ β θ θ θ β θ θ−′⎡ ⎤ ⎡ ⎤− −⎣ ⎦⎣ ⎦y X W x y X     (38)

Equations (37) and (38) allow us to concentrate the log likelihood 

Equation (36) conditional on θ ̂2 as

     
12 1 11 12 12 2

=1

ˆ( ; , ) = ln ( | , ; ( ), , )
T

t t t
t

L f yθ θ θ θ θ∗
−∑y X X Y

               (39)

                
2

12
1= ln(2 ) ln( ) ln| ( ; )| ( /2).

2 2 2e
T T Tπ σ θ− − − −W x

Now, the numerically maximizing Equation (39) conditional on θ ̂2 gives 

the MLE θ ̂12, which from Equations (37) and (38), gives θ ̂1*1. Although 

the two-step procedure provides a consistent estimation of the model, 

the covariance matrix of β ̂, which is obtained by inverting the negative 

of the Hessian matrix, is biased because of the generated regressors xt

－δ ̂’zt that replace xt－δ ’zt in the second-step regression of Equation 

(18).

V. Concluding remarks

A linear regression is not a good choice in analyzing certain cases, 

such as the relationship between oil prices and business cycle (Hamilton 

2003; Kim 2012). In such cases, scholars tend to consider nonlinear 

specifications. The crucial issue, however, is selecting a proper specifi- 

cation among all the possible nonlinear relationships. Hamilton (2001) 

proposes a flexible nonlinear inference wherein the philosophy of his 

methodology is nonparametric, but the estimation is parametric. Hamilton 

(2003) and Kim (2012) demonstrate that this methodology is expedient 

in addressing the nonlinear relationship between oil prices and the busi- 

ness cycle in the time series and in the panel framework respectively.

Hamilton’s (2001) methodology, however, is not valid in the presence 

of endogenous explanatory variables. This paper develops a flexible 

nonlinear inference with endogenous regressors. We apply the control 
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function approach and reveal that an appropriate transformation of the 

model allows us to employ Hamilton’s (2001) approach directly. In this 

paper, we propose two estimation procedures: a joint estimation proced- 

ure and a two-step estimation procedure. The parameters in these pro- 

cedures can be estimated by maximum likelihood or Bayesian method.

Our new methodology is useful in macroeconometric models wherein 

endogenous explanatory variables exist, and a true relationship between 

a dependent variable and explanatory variables is nonlinear, such as the 

cases of nonlinear Taylor rule (Kim et al. 2005) and nonlinear macro 

model (Wolman 2006). We leave the application of this new method- 

ology for future research.

(Received 15 April; Revised 27 April 2015; Accepted 27 April 2015)
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