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This paper suggests a way to estimate a structural demand model

for differentiated products using a single cross section of product-

level data. Bajari and Benkard (2005) use revealed-preference bounds

for the taste coefficients. In order to obtain point estimates, I modify

their model in two ways. First, I impose additional bounds on the

willingness to pay for characteristics, based on the price consumers

actually paid for the product they purchased. Secondly, I make an

assumption about the distribution of taste coefficients within the bounds

for each product. I estimate the model with data on new car sales in

Norway.
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I. Introduction

The aim of this paper is to demonstrate, via an empirical example, how

to obtain point estimates of price elasticities in a differentiated products

market using a single cross section of product-level data. I estimate the

model using data on sales of new car model variants in Norway in 2004.

The paper estimates a structural model of the demand for automobiles

based on Bajari and Benkard (2005). Their model produces bounds on

price elasticities. In order to obtain point estimates of elasticities I modify

their model by imposing weak and a priori reasonable bounds on con-
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sumers’ willingness to pay for a characteristic as a percentage of the

price of the product they purchased. As in the random-coefficients logit

literature (Berry, Levinsohn, and Pakes (1995); Nevo (2001)) utility is linear

in product characteristics and tastes for characteristics have a distribu-

tion in the population of consumers. The main difference from this lit-

erature is that consumers do not have an idiosyncratic taste for products

(like the logit term) that is unrelated to observable characteristics.

A first stage estimates a scalar unobservable product characteristic

for each alternative. A second stage finds the sets of coefficients that

can rationalise the choice of each product. Under utility maximisation,

the choice of a given alternative implies that this alternative’s utility is

greater than those of all the other alternatives. These inequalities imply

bounds on the combinations of taste coefficients a consumer could pos-

sibly have, given his choice. In principle, as the number of products goes

to infinity, the sets of implied taste coefficients for each product should

become singletons. However, in practice, only bounds for each alternative

are implied by the data. Bajari and Benkard (2005) proceed to aggregate

the bounds derived from individual choices to get bounds on the aggre-

gate taste distributions.

Any product which has less of a given characteristic than the con-

sumer’s chosen product provides a lower bound on that consumer’s taste

for the characteristic (conditional on his tastes for the other character-

istics). Vice versa, any product with more of the characteristic provides

an upper bound on the consumer’s taste. Some characteristics take on

only a few discrete values, and in many cases only two: a 0 or 1. For

instance a car either has automatic or manual transmission. For dummy

(binary) variables we obtain either only lower bounds (if the chosen

product has a 1) or only upper bounds (if 0). This means that the set

of taste coefficients will not be bounded.

This problem can be mitigated by imposing conservative bounds on

the distributions of tastes. I propose to use bounds on the willingness-

to-pay for characteristics, expressed as a percentage of the price paid for

the product actually chosen. This provides a way of choosing conservative

bounds that are economically meaningful, and which vary with prefer-

ences.

The next section describes the Norwegian car market and the data

used for estimation. The third section discusses relevant aspects of the

literature, particularly the vertical differentiation model and issues re-

lating to idiosyncratic taste shocks. The fourth section sets out the model

and discusses identification. The fifth section explains the estimation
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procedure. The sixth section presents and discusses the results.

II. Background and Data

A. The Norwegian car market

This paper focuses on the market for new cars in Norway. When com-

paring this market to car markets in many other countries, two facts

stand out: (i) the small size of the market, and (ii) the absence of a

domestic car manufacturing industry.

In 2012, about 130,000 new cars were sold in Norway (with a

population of 5.1 million), all of which were imported.1 The five largest

brands by unit sales were Volkswagen, Toyota, Volvo, Ford and Nissan,

with market shares in the range of 6-13%.

Although a much larger country, South Korea (with 50 million inhab-

itants) is an interesting comparison, because it is at the opposite end of

the spectrum in terms of the role of domestic car manufacturing. In

South Korea in 2012, imported cars were less than 10% of total domestic

car sales of about 1.4 million. In fact, the number of imported cars in

that year was almost exactly the same as in Norway at 130,000.2

B. Data

For reasons of availability, the econometric analysis in this paper uses

data from 2004. The data contain sales and product characteristics for

all the 904 new car model variants sold in Norway in 2004.

Previous studies of the demand for cars have usually treated a model

(“name plate”) as one product, and have used the characteristics of the

cheapest or most sold (“baseline”) variant as the characteristics of the

model (Berry Levinsohn and Pakes 1995). In fact, most models are mar-

keted with a large number of different variants, varying in body type,

engine size, transmission, or fuel type. Table 1 shows the 21 best-selling

models (arranged by price), some characteristics of the modal variant of

each of these models, along with the mean, minimum and maximum of

the characteristics across variants of this model. It also shows the num-

1 Information Council for Road Traffic, ofv.no.
2 Korea Automobile Importers and Distributors Association, Available at: http://

www.kaida.co.kr/brand/BrandMain.jsp?pageId=2&articleId=45892. The South

Korean car industry produces mainly for export, however: around 60% of produc-

tion is shipped abroad.
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TABLE 3

SUMMARY STATISTICS

ber of variants of the model, total sales of the model, sales of the best-

selling variant, as well as the model’s rank in total sales. Table 2 does

the same for a range of models chosen to represent the whole spectrum

of car models, from the most expensive sports car through family cars

to the smallest hatchback. Prices are list prices. List prices might differ

from transaction prices, but these are not available apart from in smaller
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surveys which cover only a few products. Also, car importers in Norway

usually have a policy of resale price maintenance which limits the de-

viations from list prices. The tables include the unobserved characteristic

which is estimated in a first stage. This will be discussed in the next

section.

Table 3 shows the 30 characteristics used for estimation, along with

their mean across all products, the sales-weighted mean, and the min-

imum and maximum. It also shows the imposed bounds on the will-

ingness to pay for one unit more of the characteristic. These bounds

are discussed in subsection IV.E.

III. Literature

This section reviews parts of the literature on estimation of demand

systems for differentiated products. The model in this paper can be

viewed as a multidimensional extension of the vertical differentiation

model of Bresnahan (1987). I therefore give an overview of that model

before I summarise a recent discussion about the idiosyncratic (e.g. logit)

taste terms in discrete-choice models.

A. Bresnahan’s model of vertical differentiation

Bresnahan (1987) estimates car demand using a vertical differentiation

model like those in Mussa and Rosen (1978) and Shaked and Sutton

(1982). In this model a consumer’s utility is

= ,ij j i ju x pb - (1)

where the characteristic, xj, is a scalar representing “quality.”3 The taste

parameter b has an estimated density on a nonnegative support, so that

all consumers have a positive marginal valuation of the characteristic.

Consumers make different choices because they have different valuations

of the characteristic relative to price.

Utility for each product can be pictured as a linear function of b ,

where －pj is the intercept with the vertical axis, and xj is the gradient.

Each consumer is located somewhere on the horizontal axis, and chooses

the product with the utility line that is highest at this b-value. For all

3 Quality is an estimated function of characteristics. The important thing in

this context is that quality is the same for all consumers.
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products to have positive demand, it must be the case that if one product

has strictly lower quality than another, it also has a strictly lower price.

It follows that the utility lines are ordered in a pattern where the lowest-

quality product has the highest-lying line close to the vertical axis, be-

cause it has the highest vertical intercept (lowest price). At some point,

this line is crossed by the product which is above it in the quality

ranking (steeper slope). For high enough bs, this line is superseded by

the third-lowest quality product, and so on. In general, the point where

the utility lines for products j and j＋1 cross is given by

1, 1

1

= .j jj j

j j

p p
x x

b ++

+

-

-
(2)

If products are indexed in order of increasing quality, product j’s market

share is

, 1 1,( ) ( ),j j j jF Fb bb b+ -- (3)

where Fb is the cumulative distribution function of b , or the distribution

of willingness to pay for quality in the population of consumers.

Bresnahan assumes a uniform density for b . Demand for a product

is then proportional to the length of the interval on the horizontal axis

where this product’s utility line is the highest:

1 1, 1 1,

1 1

= [ ] = [ ],j j j jj j j j
j

j j j j

p p p p
q

x x x x
d b b d + -+ -

+ -

- -
× - × -

- -
(4)

where d is the (constant) density function. The cross-price and own-price

demand derivatives are (d/(xj＋1－xj)) and －(d/(xj＋1－xj))－(d/(xj－xj－1)), so

the more similar the products are in terms of quality, the higher the

price elasticities. Graphically, price substitution happens in the following

way: When the price of a product goes up, its utility line shifts down,

since the vertical intercept, －p, is lower. This means that the point

where it rises above the utility of the lower-quality neighbour is shifted

outwards, and the point where it is superseded by its higher-quality

neighbour is shifted inwards, shrinking the interval where it is above

the other lines.
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B. Idiosyncratic tastes

Caplin and Nalebuff (1991) point out that including idiosyncratic error

terms (as in a logit model) in utility is equivalent to including a dummy

for every product, and imposing draws from the chosen distribution4 as

the coefficients on these dummy variables. This implies that the intro-

duction of a new product adds one dimension to unobserved character-

istics space. Since the expected difference between the logit term of any

two products is the same regardless of the number of products, there is

no congestion in unobserved characteristics space (Ackerberg and Rysman

2005). This is counterintuitive in the sense that one would expect pro-

ducts to become closer as their number increases, as in a Hotelling

model. Congestion does occur in the observed part of characteristics

space, but the additional dimension of unobserved characteristics space

allows every new product to be differentiated in a new way. The lack of

congestion appears to overestimate the benefit of variety to consumers

(Petrin 2002). One would expect that as the number of products goes to

infinity, every product should have a perfect substitute, i.e. that every

consumer could substitute to some other product with zero utility loss.

Bajari and Benkard (2003) show that in any logit model such utility

losses are bounded away from zero in the limit.

Ackerberg and Rysman (2005) propose to let the distribution of the

idiosyncratic term change with the number of products in the choice

set, to allow for congestion of product space. Berry and Pakes (2007) do

away with the idiosyncratic term altogether, giving rise to a pure char-

acteristics model. In this paper I estimate a model based on the pure

characteristics model of Bajari and Benkard (2005). That model will be

discussed in detail in the next section. Blow, Browning, and Crawford

(2008) estimate a nonparametric characteristics-based demand model for

milk.

IV. Model and Identification

A. The model

There are J products defined as bundles of K characteristics (xj, x j),

where xj∈RK－1 is observed, and x j∈R is not observed by the researcher.

The unobserved characteristic represents such things as style, quality

and service, collapsed into a scalar value. Each consumer chooses one

4 Type 1 extreme value in the case of the logit model.
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product. This is the product which maximises his or her utility over the

set of all products. Utility is a linear function of the product character-

istics and price. The fact that consumers choose different products is

only due to differences in their willingness to pay for characteristics.

The final goal of the analysis is to estimate the joint distribution of the

taste coefficients, i.e. the linear coefficients in the utility function.

A consumer’s ranking of alternatives is unaffected by the scale of

utility. Utility can therefore be multiplied by an individual-specific con-

stant without changing the consumer’s utility-maximising choice. The

following normalisation is therefore permitted: all price coefficients are

set to －1 (multiply by individual-specific constant, the inverse of the

price coefficient).5 Utility is then given by

= ,ij j i ju x pb - (5)

where i indexes individuals and j indexes products. For simplicity of

notation, the vector xj includes the unobserved characteristic as well as

all the other characteristics.

B. The hedonic price function

Using the assumption that utility is strictly increasing in the unob-

served characteristic x for all products and for all consumers (and two

mild regularity conditions), Bajari and Benkard (2005) show that for

any two products j and j’ with strictly positive demand, it must be true

that

1. If xj＝xj’ and x j＝x j’, then pj＝pj’.

2. If xj＝xj’ and x j＞x j’, then pj＞pj’.

3. |pj－pj’|≤M(|xj－xj’|＋|x j－x j’|) for some M＜∞.

Using these properties, we can define a mapping from observed and

unobserved characteristics to price. Because of 1 the mapping is a func-

tion, since a point in the domain of the mapping maps to a unique

point in its image set. Because of 2 the mapping is strictly increasing in

the unobserved characteristic. Because of 3 the mapping defines a

(Lipschitz) continuous surface. The price surface is denoted p(x, x ). In a

5 In logit and probit models this normalization is achieved by fixing the variance

of the error term.
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logit demand model, such a surface does not necessarily exist, since

two products with the same characteristics and different price can both

have strictly positive demand, because of the idiosyncratic taste term.

The price function depends on the nature of competition, marginal costs,

consumer preferences, and the products present in the market. If any

of these primitives change, the shape of the price surface is also likely

to change. The price function expresses the relationship between prices

and characteristics in equilibrium in a particular market. See Bajari

and Benkard (2005) pp. 1247-8 for a discussion of the price function.

　　　

C. Identification of the unobserved characteristic

The assumption used for identification is that the unobserved charac-

teristic is independent of the observed characteristics.6 The unobserved

characteristic has no inherent units, and so it is only identified up to a

monotonic transformation. It is therefore normalised so the marginal

distribution of x is U(0, 1). Bajari and Benkard (2005) use an identi-

fication result from (Matzkin 2003): {x j}j＝1,...,J is identified when the

prices of many products are observed in a market, so that the joint

distribution F(p, x) is known. The proof is:

| = ( ) = ( ( , ) | = )p x x j j jj
F p Pr p x p x xx £

1= ( ( , )| = )j jPr p x p x xx -£
1= ( ( , ))j jPr p x px -£ (6)

1= ( , )

=
j j

j

p x p
x

-

The second line holds since the price function has an inverse for a

given x since it is strictly increasing and continuous in x. The third line

holds by the independence between x and x. The fourth line holds

because the q-quantile of U(0, 1) equals q.

　　　

D. Identification of the taste coefficients

In the second stage, the unobserved characteristic recovered in the

first stage is given, and treated in the same way as the observed char-

6 This assumption is slightly stronger than the mean independence assumption

in Berry, Levinsohn, and Pakes (1995). Manski (1994) discusses alternative

moment conditions.
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acteristics. For notational convenience, it is therefore included as one of

the elements of the x-vector. For product j to maximise utility, it must

be the case that

, .j j l lx p x p l jb b- ³ - " ¹ (7)

Let X̃j be the (J－1)×K-matrix whose rows are the (1×K )-vectors xj－xl,

l＝1, ..., j－1, j＋1, ..., J, and let p̃j be the j－1 vector with elements

pj－pl, running over the same indices as X̃j. Then the condition that

product j maximises utility can be written as a system of linear

inequalities on standard matrix form. The set of taste coefficients

permitted by the revealed preference condition (7) for product j is

{ | }.j j jA X pb bº £% % (8)

This means that if a consumer chooses product j, his or her vector of

taste coefficients must be inside the K-dimensional convex polyhedron

Aj. The market share of a product is the share of the population with

taste vectors falling within the polyhedron corresponding to that product.

　　　

E. Bounds on willingness to pay

For a given characteristic, such as horsepower, the revealed preference

inequalities in (7) imply no upper bound on the coefficient for those con-

sumers who buy the product with the highest value of that characteristic.

In the same way, there is no lower bound for the consumers buying the

product with the lowest value of a characteristic.

This problem is limited in the case of continuous characteristics, since

there will usually be only one product attaining the maximum (and one

attaining the minimum) for each characteristic. For indicator variables

(‘has a diesel engine’), however, all products are either the maximum or

minimum of that characteristic. This means that none of the A-sets

(sets of coefficients that rationalise a given choice) will be bounded.

Leaving the coefficient for some characteristics unbounded also has re-

percussions in the sense that an extremely high value for one charac-

teristic often must be matched by an extreme value of another charac-

teristic in order for the product to be the utility maximiser.

To deal with this problem I impose conservative bounds on the

coefficients. Since the price coefficient is normalised to －1, the coef-
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ficients of the characteristics have the convenient interpretation of

willingness-to-pay for a one unit increase in the value of that charac-

teristic. Accordingly, the bounds are formulated as bounds on the will-

ingness to pay for characteristics, given as a percentage of the price of

the product in question. (The bounds are shown in Table 3.) For example,

a consumer’s willingness to pay for an additional litre of cylinder volume

is bounded above by 100% of the price of the car that the consumer

actually bought. So if a consumer buys a car that costs 300.000 kroner

(appr. $ 50,000), it is assumed that his willingness to pay for an add-

itional 1 litre of cylinder volume on a car is bounded above by 300.000

kroner. For some characteristics it is assumed that willingness-to-pay is

bounded below by zero, i.e. that nobody would pay a positive amount of

money to have less of these characteristics. On the other hand, this

possibility is allowed for many characteristics. For instance, if somebody

does not like German cars, he or she may be willing to pay a little extra

to have a car which is not German. The constraints are meant to be

conservative, and it appears unlikely that they should be violated by

the true distribution of taste coefficients.

　　　

F. Distribution of tastes within the bounds

While the revealed-preference inequalities provide bounds (the A poly-

hedra) on the taste coefficients of the consumers who choose each pro-

duct, they tell us nothing about the distribution of tastes within these

bounds. When the number of products goes to infinity in such a way

that the A-sets are partitioned ever more finely, in the limit these sets

will be points (see Bajari and Benkard (2005) for a proof). Accordingly it

can be expected that with a large number of products, the distribution

of probability mass inside these sets will not be important. I impose the

assumption that the distribution of consumer tastes within each set Aj

is uniform. (See section V.B for further details.)

V. Estimation

A. First stage

The unobserved characteristic is given in (6) as a quantile of a con-

ditional distribution: Fp|x＝xj
(pj). The nonparametric estimation of condi-

tional distribution functions and quantiles are well known problems.

Matzkin (2003) suggests the following estimator, based on Nadaraya (1964):
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1 2
=1

| =

2
=1

( ) ( )
ˆ ( ) = ,

( )

J
j i j i

i
p x x j Jj j i

i

p p x x
k k

h hF p x x
k

h

- -

-

å

å

%

(9)

where k2(․) is a multidimensional kernel, , and h is the

bandwidth.

My data have around 900 products and 30 characteristics. It is difficult

to estimate a quantile of a 30-dimensional density using just 900 data

points. I follow (Bajari and Benkard 2005) in assuming that the price

function is additively separable in most of the characteristics, and then

estimate the nonadditive part nonparametrically after removing the linear

effects of the other variables. The price function is then p(x, x )＝p(x A, x )

＋x Bg ̂, where (x A, x B) is a partitioning of the vector x.7 The g ̂ is the OLS

estimate from the regression

= .A B
j j j jp x x eq g+ + (10)

The price data used for the nonparametric estimation of the unobserved

characteristic are

ˆ= .B
j j jp p x g-% (11)

I used Epanechnikov kernels for the estimator in (9) (see for instance

Martinez and Matinez (2002)):

2
1

3( ) = (1 ), 1 1
4

k y y y- - £ £
(12)

The bandwidths were chosen according to the Epanechnikov bandwidth

rule (see Azzalini (1981)) h＝1.3s ̂n－1/3, where n is the number of obser-

vations and s ̂ is the empirical standard deviation of the data.

　　　

B. Second stage

I use a multi-stage Gibbs sampler to take random draws from the A-

sets. The Gibbs algorithm is a general principle that can be used to draw

7 xA＝(horsepower, cyl.vol., length).

1 1( ) = ( )
u

k u k s ds
-¥ò%
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from a multivariate density f (x) which is difficult to draw from directly,

but whose univariate conditional densities can be drawn from. Take a

starting value x(t), and generate X1
(t＋1): f1 (x1|x2

(t)..., xK
(t)), then X2

(t＋1): f2 (x2

|x1
(t＋1), x3

(t)..., xK
(t)), and so on. As the number of iterations gets large, the

distribution of x approaches f (x) (Robert and Casella 2004).

The revealed preference condition for the coefficient of characteristic

1 as given in (7) can be rewritten as, for all l≠j,

, ,
1

1 ,1 ,1
,1 ,1

( ) ( )
if >

k l k j k l j
k

j l
j l

x x p p
x x

x x

b
b ¹

- - -
³

-

å
(13)

, ,
1

1 ,1 ,1
,1 ,1

( ) ( )
if < ,

k l k j k l j
k

j l
j l

x x p p
x x

x x

b
b ¹

- - -
£

-

å
(14)

and similarly for the other coefficients. Denote the right hand side of

the inequalities above B(j, l, 1). This means that in general, for the

product j, every other product provides either an upper or a lower

bound on the coefficient values which could lead to the purchase of

product j. The bounds based on willingness-to-pay, as described above,

denoted as b1 and b̅1, provide additional constraints.

The distribution of probability mass inside each A-set is uniform, as

discussed in the previous section.8 Given a starting value, b j
(0), which is

inside Aj, it must be true that

(0) (0)
,1 ,2 , ,1,min ,1,max| , , ( , ),j j j K j jb b b b bK � U (15)

where the parameters of the univariate uniform depends on the con-

ditioned-on betas in the following way:

,1,min ,1 ,1,1= max{ , max{ ( , ,1) | and > }}j j ljb B j l l j x xb ¹ (16)

,1,1,max ,1 ,1= min{ , min{ ( , ,1) | and < }}.jj j lb B j l l j x xb ¹ (17)

8 Even if this assumption were not maintained, random draws under the as-

sumption of a uniform distribution will reveal the support of the random vector

bj, and this support is precisely the set Aj.
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Given the starting value, b j
(0), the algorithm follows the Gibbs procedure

described above, with equations (15-17) describing the conditional dens-

ities that are drawn from at each stage.

The Gibbs sampler is computationally straightforward. The most chal-

lenging part was to find a starting point, i.e. any point satisfying (7).

Bajari and Benkard (2005) report that they used as starting values

coefficients derived from first-order conditions under the assumption

that product space is filled up (so that consumers can pick a product

anywhere in characteristics space). This method did not work for my

data. The only method which turned out to be reliable was to use the

centre of the Chebyshev ball (the largest K-dimensional ball wich can

be fit inside the polyehedron), computed by Komei Fukuda’s cdd9 code,

implemented for Matlab in MPT (Herceg, Kvasnica, Jones, and Morari

2013).

To draw from the full joint distribution of the betas, I use nsj＝1500

draws for each product j. An initial 1500 draws are burn-in draws for

the Gibbs sampler. Each draw from Aj is weighted by the market share

of product j. The simulated market share, used to compute price elas-

ticities, is

=1 =1

1= 1( = ),
nsJ l

j l li
l il

s s c j
nså å(

(18)

where sl is the observed market share of product l, i.e. the proportion of

car buyers whose coefficients are in the set Al. cli denotes the product

which maximises utility given the i-th draw of coefficient vector from Al. l(․)

is the indicator function.

To clarify, when prices and product characteristics are at their

observed values, all nsj draws for product j result in the choice of j, so

that . Substitution effects show up when prices change,

and some of the draws for product j result in the purchase of a different

product, so that . At the same time, draws from a dif-

ferent product could now result in the purchase of product j. (The

draws for product j represent the taste distribution of consumers who

actually purchased product j.)

　　　

9 Komei Fukuda (Available at: http://www.inf.ethz.ch/personal/fukudak/cdd

home/index. html).

=1

1 1( = ) =1ns j
jii

j

c j
ns å

=1

1 1( = ) <1ns j
jii

j

c j
ns å
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VI. Results

A. The unobserved characteristic

The estimated unobserved characteristic ranges from 0.07 to 0.99 and

has a mean of 0.52. Tables 1 and 2 show the value of the unobservable

for the modal variant of a selection of models, as well as its mean, min-

imum and maximum across variants of each model. The unobserved

characteristic is independent of all other characteristics (not including

price). Generally speaking, a product with a high price relative to its

characteristics will have a high value of the unobserved characteristic,

since high quality, style or prestige is required for it to have positive de-

mand in the presence of other, cheaper products with similar observed

characteristics. This is illustrated by table 4. All Mercedes E-class vari-

ants have high values of the unobserved characteristic. This is consistent

with the perception of Mercedes as a prestigious brand. The Peugeot

607 is a comparable car to the Mercedes E for similar engine sizes. A

comparison reveals that the unobserved characteristic is lower for the

Peugeot for similar specifications, presumably reflecting the higher pres-

tige of the Mercedes. A similar pattern is found by comparing the Audi

A4 with the Skoda Octavia, two similar models where the first is re-

garded as more prestigious than the second.

The low-end Mercedes E variants have extremely high values for the

unobserved characteristic, reflecting some feature which gives them

positive demand in spite of their very high prices relative to observed

characteristics. Each variant is a package of characteristics, and the

prestige derived from a big engine or a German manufacturer goes into

those observed characteristics. The unobserved characteristic can there-

fore not simply be interpreted as prestige or quality, but rather as the

amount of prestige or quality that the car has beyond what is derived

from its observed characteristics. Accordingly, a 5 litre top-of-the-range

Mercedes E is indeed more prestigious than the bottom-of-the-range 1.8

litre version, but it is already clear from its observed characteristics

that it is a high-prestige product. This is not the case with the 1.8 litre

version, however, and the model therefore assigns it a higher unobserved

characteristic. Compared to a 2 litre Peugeot 607 which sells for 365,000

kroner, the 1.8 litre Mercedes must have substantial unobserved merit

in order to warrant its 512,000 kroner price tag.
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Make Model Cyl.vol. Length Price Bodytype Unobs. char.

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

’Mercedes-Benz

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

1.8

1.8

2.2

2.2

2.6

2.6

2.6

2.6

2.6

2.6

3.2

3.2

3.2

3.2

3.2

4.0

5.0

5.0

5.0

5.4

5.4

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

5.12

5.60

5.41

5.94

6.03

6.40

6.30

6.50

6.90

6.81

7.52

7.87

7.35

8.35

7.84

10.07

11.17

11.50

11.93

16.30

16.88

sedan

station

sedan

station

sedan

sedan

sedan

station

station

station

sedan

sedan

sedan

station

station

sedan

sedan

sedan

station

sedan

station

0.90

0.96

0.95

0.97

0.69

0.78

0.79

0.77

0.85

0.85

0.62

0.72

0.65

0.78

0.74

0.38

0.39

0.44

0.47

0.60

0.63

’Peugeot

’Peugeot

’Peugeot

’Peugeot

’Peugeot

607

607

607

607

607

2.0

2.0

2.2

2.2

3.0

4.8

4.8

4.8

4.8

4.8

3.65

3.85

4.25

4.45

5.85

sedan

sedan

sedan

sedan

sedan

0.59

0.76

0.66

0.81

0.22

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

’Audi

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

A4

1.6

1.6

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

2

2

2

2

2

2

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

2.93

3.01

3.80

4.00

3.33

3.81

3.98

4.19

3.52

4.00

3.39

4.76

3.81

3.54

4.76

4.01

sedan

station

sedan

sedan

sedan

sedan

station

station

station

station

sedan

sedan

sedan

station

station

station

0.62

0.65

0.51

0.53

0.43

0.66

0.62

0.63

0.53

0.75

0.63

0.59

0.73

0.70

0.66

0.81

(Table 4 Continued)

TABLE 4

UNOBSERVED CHARACTERISTICS FOR SAMPLE MODELS WITH VARIANTS
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TABLE 4

(CONTINUED)

Make Model Cyl.vol. Length Price Bodytype Unobs. char.

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

’Skoda

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

OCTAVIA

1.4

1.6

1.6

1.8

1.8

1.8

1.8

1.8

2.0

2.0

1.4

1.4

1.6

1.6

1.8

1.8

1.8

1.8

1.8

2.0

2.0

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

1.91

2.25

2.28

2.71

3.20

3.27

2.49

2.90

2.49

3.07

1.91

1.91

2.25

2.28

2.71

3.20

3.27

2.49

2.90

2.49

3.07

station

hatchback

station

hatchback

station

station

station

station

hatchback

hatchback

hatchback

station

hatchback

station

hatchback

station

station

station

station

hatchback

hatchback

0.47

0.29

0.43

0.45

0.07

0.34

0.40

0.58

0.28

0.24

0.43

0.47

0.29

0.43

0.45

0.07

0.34

0.40

0.58

0.28

0.24

B. Taste coefficients

The draws generated in the second stage of the estimation are uni-

formly distributed inside the 30-dimensional revealed-preference polyhedra.

Figure 1 shows scatter plots of the joint densities of the taste coeffi-

cients for length and cylinder volume of consumers who buy three dif-

ferent variants of each of the models Audi A4, A6 and A8. The variants

are the bottom-of-the-range, a middle-of-the-range, and the top-of-the-

range variants of each model in terms of price and engine size. The

scatter plots are the projections of points distributed in a 30-dimensional

space onto a 2-dimensional space. This explains why the sets do not

look like polyhedra and the points do not look like they are uniformly

distributed.

Taste coefficients for length and cylinder volume are bounded below

by zero and above by the price of the product the consumer has chosen

(cf. table 3). In the discussion of the bounds I said that they are meant

to be conservative bounds, and that they are unlikely to be violated by
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FIGURE 1

SCATTER PLOTS OF JOINT DENSITIES OF TASTE

COEFFICIENTS FOR SAMPLE PRODUCTS

the true taste distribution in the population. At the same time, the

model is not identified without these bounds. This means that the dis-

tribution of taste coefficient draws generated by the model will be con-

strained by the bounds to varying degrees.

It is clear that in the case of the top A8, the bounds severely restricts

the area within which the draws fall, as points accumulate close to the

upper bounds. Since the biggest A8 faces few or no competitors that

are longer or have a bigger engine, revealed preference does not constrain

the draws upwards. The mid A4, on the other hand, is located in a very

densely occupied area of characteristics space. The large number of close

competitors means that revealed preference provides upper constraints

that are well below the upper bounds on willingness-to-pay.

Comparing the top or mid A4 with the bottom and mid A6 reveals an

interesting pattern. The A4 is smaller than the A6, but otherwise the

two models are similar with respect to design, quality and service. The

different choices of buyers of the A4 and buyers of the A6, should

therefore be due to a large extent to different tastes for length. This is

indeed confirmed. Mid A4 buyers have a similar distribution of taste for
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volume to mid A6 buyers (cylinder volume being the same), but markedly

lower tastes for length. The reason to pay 30.000 kroner to get an A6

instead of a very similar, but slightly shorter A4, is that the willingness-

to-pay for length is high. Some consumers who buy the top A4 have high

willingness-to-pay for cylinder volume, but not for length. Conversely,

bottom A6 buyers care little about engine size, but have a very strong

taste for length. The same pattern is confirmed by comparing the A6

and the A8.

To find the aggregate distribution of taste parameters, the draws for

each of the 904 variants are aggregated, and weighted by the market

share of each car, corresponding to the proportion of consumers repre-

sented by those particular draws. Since probability mass is assumed to

be uniformly distributed inside each taste coefficient polyhedron, the

approximation to the true aggregate taste distribution will be better if

each polyhedron is small in some sense. As discussed in the identifica-

tion section, if the number of products goes to infinity in such a way

that all polyhedra collapse to points, the distribution resulting from the

model will equal the true distribution in the limit. The scatter plots in

Figure 1 give the impression that the polyhedra are relatively large.

However, if one imagines a 30-dimensional rectangle with sides similar

to those formed by the scatter plot of the top A8, this 30-dimensional

rectangle will contain all 904 taste coefficient polyhedra. These polyhedra

are disjoint, and so much smaller than the rectangle which contains

them all. Furthermore, most polyhedra are contained in a much smaller

volume, with a few fringe products like the top Audi A8 having much

larger polyhedra.

Figure 2 shows kernel smoothed graphs of the aggregate marginal

densities of some taste coefficients. Compared to the scatter plots in

Figure 1, where points look almost uniformly distributed, these densities

have much more probability mass concentrated at certain (low) levels.

The products with high sales are concentrated in certain areas of char-

acteristics space. In practice that means that many people have tastes

leading them to prefer products in those areas. For the purposes of this

discussion, that in turn means that draws in those areas are given much

larger (market share) weights. All the marginal densities have peaks re-

latively close to zero. This is most marked in the cases of length and

cylinder volume. These coefficients are well constrained by revealed pref-

erence, because the corresponding characteristics are continuous and

exhibit large variation in the data. The marginal densities for some

dummy variables have less sharp peaks, because their taste coefficients
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FIGURE 2

AGGREGATE (SMOOTHED) MARGINAL

DENSITIES OF SOME TASTE COEFFICIENTS

are not identified as well by the revealed preference bounds.

Berry, Levinsohn, and Pakes (1995) assume independence between

the taste coefficients for different characteristics. Figure 3 shows kernel

smoothed pairwise joint aggregate densities for some taste coefficients.

The graphs exhibit some interesting examples of dependence between

taste parameters that would be ruled out by assuming independence.

First, there is a substantial proportion of the population with a relatively

high taste for both cylinder volume and length, whereas very few people

have high tastes for only one of these characteristics and not the other.

Secondly, there are many consumers with strong preferences for both

four-wheel drive and a SUV body type. This is not surprising, but cer-

tainly not a feature that should be ruled out by distributional assump-

tions. Thirdly, an inverse relationship exists between taste for cylinder

volume and disutility of fuel costs. Again a substantial group of con-

sumers have a very low disutility of fuel costs and at the same time a

very high preference for cylinder volume, whereas hardly anyone has

such high tastes for cylinder volume while at the same time disliking

fuel costs very much. Finally, the perhaps most interesting example shows

that there is a strong inverse relationship between tastes for German

cars and tastes for Japanese or Korean cars. Especially, consumers
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FIGURE 3

AGGREGATE (SMOOTHED) PAIRWISE JOINT DENSITIES OF

SOME TASTE COEFFICIENTS

who have a high willingness to pay for their car being German, get a

high disutility from an Asian car. Also, many consumers who value Asian

cars dislike German cars. These examples seem intuitive, and appear to

support the case that independence between taste parameters is an

undesirable assumption.

　　　

C. Substitution patterns

Elasticities were computed by finding the numerical derivative of the

simulated market shares given by (18) w.r.t. each product. I did this in

two ways. Under method I consumers face a choice set containing all

variants of every model, leaving them with 904 choices. Derivatives were

computed with finite differences by letting the price increase for all

variants of the relevant model, and then looking at how the joint market

share of all variants of the model changed.10 To turn the derivatives

into elasticities, they where multiplied by the price of the modal (best-

selling) variant, and divided by the original joint market share.

In method II, I removed all variants apart from the modal variant of

10 I increase the prices of all variants of a model rather than one at a time

because I am particularly interested in substitution between models, since this

has been the focus of the literature.
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each model from the choice set, and simulated demands with this new

choice set. I then computed derivatives in the same way as for model I.

The median own price elasticity from method I was -35, and -13 in

method II. Berry, Levinsohn, and Pakes (1995) report own price elas-

ticities that mostly range from -3 to -6. Table 5 shows the own price

elasticities, markups (price minus marginal cost) and markups as a per-

centage of price for the 50 best selling products in the market, computed

using method II and the assumption of a Nash equilibrium in prices,

with profit maximising entities being the 16 car manufacturing companies

which produce the 197 products on the market. The executive/big family

type cars at the top of Table 5 (Mercedes E to Saab 9.5) all have re-

latively high markups, ranging from 19 to 32%. This is consistent with

the observation that these models are in a niche with few competitors

of similar regard. Further down the list markups are generally lower,

consistent with the fact that characteristics space is more crowded in

that area.

In Tables 6-9 each row shows the elasticities for a car with respect to

the price of the cars in each column. Tables 6 and 7 are elasticities

computed with method I, and Tables 8 and 9 are elasticities computed

with method II. In Tables 6 and 8, the models displayed are the ones

used previously to represent the spectrum of choices in the market,

while Tables 7 and 9 display the top selling 21 cars. Products have

been arranged with the most expensive in the top-left corner, and the

cheapest in the bottom-right corner.

The elasticities for the representative sample of cars in Table 6 exhibit

a pattern where cross-price elasticities of cars that are far away from

each other are zero or very low. Accordingly the areas furthest away from

the diagonal mostly mostly consist of zeros. On the diagonal are own-

price elasticities, and broadly speaking, as one moves further away from

the diagonal, one gets to cross elasticities with products that are more

different. In the top left and the bottom right areas of the matrix, the

belt of positive cross elasticities around the diagonal is thin. Since these

extreme areas represent products at the fringes of characteristics space,

they have fewer substitutes. Moving towards the middle of the matrix,

where characteristics space is more densely filled with products, the

belt around the diagonal gets thicker, since products have more sub-

stitutes. Moving away from the diagonal, it is generally true that cross

elasticities gradually get lower, as they represent products that are grad-

ually more different from the product at the diagonal. Cross elasticities

higher than one are normally only found for adjacent or almost adjacent
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Make Model Cyl.
vol. Price Markup

(P-MC)

Markup
as

% of
price

Own
price
elast-
icity

Units
sold

modal
var.

Units
sold
total

Sales
modal
% of
total

’Mercedes-Benz

’Volvo

’Bmw

’Audi

’Saab

’Nissan

’Mercedes-Benz

’Honda

’Subaru

’Toyota

’Mitsubishi

’Subaru

’Bmw

’Volkswagen

’Suzuki

’Saab

’Volkswagen

’Ford

’Peugeot

’Audi

’Toyota

’Citroen

’Volvo

’Opel

’Opel

’Renault

’Mazda

’Audi

’Nissan

’Renault

’Skoda

’Suzuki

’Volvo

’Citroen

’Toyota

’Ford

’Mitsubishi

’Volkswagen

’Peugeot

’Mazda

’Opel

’Opel

’Suzuki

’Citroen

’Volkswagen

’Ford

’Hyundai

’Toyota

’Skoda

E

V70

5

A6

9.5

X-TRAIL

C

CR-V

LEGACY

RAV4

OUTLANDER

FORESTER

3

TOURAN

VITARA

9.3

PASSAT

MONDEO

407

A4

AVENSIS

C5

V50

ZAFIRA

VECTRA

MEGANE

6

A3

PRIMERA

LAGUNA

OCTAVIA

LIANA

S40

XSARA

COROLLA

FOCUS

LANCER

GOLF

307

3

ASTRA

MERIVA

IGNIS

C3

POLO

FIESTA

GETZ

YARIS

FABIA

2.2

2.4

2.2

1.8

2.0

2.2

1.8

2.0

2.0

2.0

2.0

2.0

1.8

1.8

2.0

1.8

1.8

2.0

1.6

1.6

1.8

1.8

1.8

1.8

1.8

1.6

1.8

1.6

1.6

1.6

1.8

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.4

1.4

1.2

1.4

1.4

1.0

1.2

5.4

5.3

4.7

4.4

4.1

3.9

3.7

3.5

3.5

3.5

3.4

3.4

3.2

3.2

3.1

3.1

3.1

3.1

3.0

3.0

3.0

2.9

2.9

2.8

2.8

2.5

2.5

2.5

2.5

2.5

2.5

2.4

2.4

2.3

2.3

2.3

2.3

2.3

2.2

2.2

2.1

2.1

1.9

1.9

1.8

1.8

1.6

1.6

1.6

1.1

1.1

1.5

0.8

1.1

0.5

0.3

1.3

0.3

0.4

0.5

0.3

0.2

1.0

0.2

0.4

0.6

0.6

0.5

0.3

0.8

0.2

0.4

0.7

0.5

0.6

0.2

0.1

0.1

0.2

0.3

0.6

0.8

0.2

0.6

0.3

0.1

0.1

0.5

0.1

0.2

0.6

0.2

0.0

0.6

0.1

0.2

0.4

0.2

21

21

32

19

26

12

7

36

9

12

15

10

7

32

6

14

20

19

17

10

25

6

13

26

19

25

7

5

5

8

13

25

35

10

25

14

6

6

22

3

10

28

12

2

33

5

9

24

10

-5.4

-5.8

-3.2

-7.5

-3.8

-9.0

-14.9

-3.0

-19.5

-8.5

-7.1

-10.6

-13.5

-3.9

-16.4

-7.2

-5.1

-5.2

-9.9

-15.3

-4.8

-22.6

-15.6

-3.9

-5.4

-4.4

-13.6

-22.8

-46.7

-17.1

-7.8

-5.1

-3.7

-10.3

-4.4

-7.7

-22.8

-19.5

-4.6

-56.1

-10.4

-3.7

-9.1

-51.1

-3.3

-21.5

-11.1

-4.2

-10.7

607

887

545

470

812

1647

515

1914

639

1305

721

1978

649

2015

1040

736

1525

1710

355

639

2049

341

705

360

1629

595

994

1009

217

487

547

1439

1161

225

1787

917

372

2697

1272

576

731

603

474

254

1483

508

1106

1363

519

1571

2349

1049

1614

1406

2039

1160

1914

1050

2609

1106

1978

1569

3303

1365

1478

3501

3239

953

2411

6301

968

1247

885

2996

1884

2205

1286

1025

827

1866

1446

1939

768

5205

2712

609

5662

4454

841

1756

1107

932

623

1901

641

1284

2914

1106

39

38

52

29

58

81

44

100

61

50

65

100

41

61

76

50

44

53

37

27

33

35

57

41

54

32

45

78

21

59

29

100

60

29

34

34

61

48

29

68

42

54

51

41

78

79

86

47

47

TABLE 5

MARKUPS FOR BEST-SELLING PRODUCTS ORDERED BY PRICE
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products.

In Table 7 the belt around the diagonal is much thicker. The prod-

ucts in this matrix are the best selling cars, and are located at the

centre of characteristics space, which is where they appeal to the largest

number of consumers. These products are therefore closer substitutes

than those in the previous table, which included the models at the

fringes of characteristics space. Accordingly, cross elasticities are positive

for almost all products. It is still true, however, that elasticities are

lower the further away they are from the diagonal.

Overall, the substitution patterns resulting from method I seem very

reasonable, although the magnitudes of the substitution effects are

high. Bajari and Benkard (2005) also find large price elasticities in their

application to demand for personal computers. They suggest that the

result is due to the assumption of perfect information about all products

on the part of consumers, and conclude that this is unlikely to hold

with a choice set containing 700 products. To mitigate this problem they

remove from the choice set any product with a market share of less

than 0.75%. This left them with only 24 products, and median own

price elasticity fell from -100 to -11. In a similar way I remove all but

the modal (bestselling) variants of each model, the choice set becomes

the same as that used by Berry, Levinsohn, and Pakes (1995). All models

are still included. The last column of Table 5 shows that the modal

variant usually represents a very large proportion of the total sales of

the model. I also tried to remove all models with market shares of less

than 0.5%, leaving 40 products. This gave a median own price elasticity

of -5, but this market share threshold is of course somewhat arbitrary.

As expected, elasticities are much lower with method II. This also

means that many more cross elasticities are zero. In Table 8, the belt of

positive cross elasticities around the diagonal is much narrower than in

Table 6. Removing all but the modal variant of each model removes a

model from areas of characteristics space which it does in fact cover,

but which are not covered by the modal variant. In these areas of char-

acteristics space it may be close neighbours with other models whose

modal variants are quite different from its own modal variant. In this

way, products which are in fact substitutes in variant-space (which is

what the consumer faces) are not in model-space. The general features

of the substitution patterns remain unchanged when moving from method

I to method II.

In table 8, products in the middle of the matrix have more substi-

tutes than the ones on the fringes, and the high selling products in
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Make Model ltr m pri Bodytype

Volkswagen GOLF 1.6 4.2 2.3 hatchback

’Bmw
’Audi
’Kia
’Daewoo
’Subaru
’Daewoo
’Audi
’Subaru
’Skoda
’Volvo

1
A3
CERATO
KALOS
JUSTY
LACETTI
A2
IMPREZA
FABIA
V50

1.6
1.6
1.6
1.2
1.4
1.4
1.4
1.6
1.2
1.8

4.2
4.2
4.4
3.8
3.8
4.4
3.8
4.4
4.2
4.6

2.5
2.5
2.2
1.3
2.0
1.6
2.3
2.5
1.6
2.9

hatchback
hatchback
hatchback
hatchback
hatchback
hatchback
MPV/minivan
station
station
station

Toyota AVENSIS 1.8 4.8 3.0 station

’Mazda
’Fiat
’Mitsubishi
’Bmw
’Nissan
’Volvo
’Audi
’Kia
’Kia
’Citroen

6
STILO
LANCER
3
350Z
V50
A6
CERATO
CARENS
C5

1.8
1.6
1.6
1.8
3.4
1.8
1.8
1.6
1.6
1.8

4.8
4.6
4.4
4.4
4.4
4.6
4.8
4.4
4.4
4.8

2.5
2.1
2.3
3.2
7.9
2.9
4.4
2.2
2.1
2.9

station
station
station
station
coup
station
station
hatchback
MPV/minivan
station

Ford FOCUS 1.6 4.4 2.3 station

’Mitsubishi
’Chrysler
’Opel
’Hyundai
’Skoda
’Subaru
’Subaru
’Hyundai
’Opel
’Ford

SPACE
PT
AGILA
ACCENT
OCTAVIA
FORESTER
LEGACY
ATOS
MERIVA
FIESTA

1.6
1.6
1

1.4
1.8
2
2
1

1.6
1.4

4
4.2
3.6
4.2
4.6
4.4
4.8
3.6
4
4

2.2
2.6
1.5
1.7
2.5
3.4
3.5
1.3
2.1
1.8

station
station
station
hatchback
station
station
station
hatchback
MPV/minivan
hatchback

Audi A4 1.6 4.6 3.0 station

’Bmw
’Volkswagen
’Daewoo
’Fiat
’Fiat
’Audi
’Volvo
’Skoda
’Fiat
’Audi

3
CADDY
NUBIRA
STILO
MAREA
A3
V50
FABIA
DOBLO
A2

1.8
1.4
1.6
1.6
1.6
1.6
1.8
1.2
1.6
1.4

4.4
4.4
4.6
4.6
4.4
4.2
4.6
4.2
4.2
3.8

3.2
2.1
2.0
2.1
2.2
2.5
2.9
1.6
2.1
2.3

station
station
station
station
station
hatchback
station
station
station
MPV/minivan

TABLE 10

CLOSEST SUBSTITUTES FOR FOUR SAMPLE PRODUCTS, COMPUTED USING

HIGHEST CROSS-ELASTICITIES W.R.T. THE SAMPLE PRODUCTS, WHEN

CHOICE SET HAS MODAL VARIANT ONLY
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Make Model ltr m pri Bodytype

Volkswagen GOLF 1.6 4.2 2.3 hatchback

’Kia
’Daewoo
’Daewoo
’Bmw
’Fiat
’Audi
’Volkswagen
’Audi
’Opel
’Jeep

CERATO
LACETTI
KALOS
1
STILO
A3
CADDY
A2
ASTRA
WRANGLER

1.6
1.4
1.2
1.6
1.6
1.6
1.4
1.4
1.6
2.4

4.4
4.4
3.8
4.2
4.6
4.2
4.4
3.8
4.2
3.8

2.2
1.6
1.3
2.5
2.1
2.5
2.1
2.3
2.1
3.9

hatchback
hatchback
hatchback
hatchback
station
hatchback
station
MPV/minivan
hatchback
Off-road/SUV

Toyota AVENSIS 1.8 4.8 3.0 station

’Mazda
’Mitsubishi
’Kia
’Fiat
’Nissan
’Mitsubishi
’Alfa Romeo
’Renault
’Honda
’Mazda

3
CARISMA
CERATO
STILO
350Z
LANCER
156
LAGUNA
CIVIC
6

1.6
1.6
1.6
1.6
3.4
1.6
1.8
1.6
1.6
1.8

4.4
4.4
4.4
4.6
4.4
4.4
4.4
4.8
4.2
4.8

2.2
2.3
2.2
2.1
7.9
2.3
3.0
2.5
2.3
2.5

hatchback
hatchback
hatchback
station
coup
station
sedan
station
hatchback
station

Ford FOCUS 1.6 4.4 2.3 station

’Fiat
’Alfa Romeo
’Chrysler
’Nissan
’Opel
’Opel
’Ford
’Ford
’Seat
’Nissan

MAREA
147
PT
PATROL
ASTRA
AGILA
FUSION
FIESTA
LEON
MICRA

1.6
1.6
1.6
3

1.6
1

1.4
1.4
1.6
1.2

4.4
4.2
4.2
5

4.2
3.6
4
4

4.2
3.8

2.2
2.6
2.6
7.1
2.1
1.5
2.0
1.8
2.1
1.7

station
hatchback
station
Off-road/SUV
hatchback
station
MPV/minivan
hatchback
hatchback
hatchback

Audi A4 1.6 4.6 3.0 station

’Alfa Romeo
’Nissan
’Jeep
’Bmw
’Volkswagen
’Volkswagen
’Seat
’Bmw
’Mercedes-Benz
’Mercedes-Benz

166
PATROL
WRANGLER
3
BORA
CADDY
TOLEDO
5
C
E

2
3

2.4
1.8
1.6
1.4
1.6
2.2
1.8
2.2

4.8
5

3.8
4.4
4.4
4.4
4.4
4.8
4.6
4.8

4.5
7.1
3.9
3.2
2.5
2.1
2.3
4.7
3.7
5.4

sedan
Off-road/SUV
Off-road/SUV
station
sedan
station
sed
sedan
sedan
sedan

TABLE 11

CLOSEST SUBSTITUTES FOR FOUR SAMPLE PRODUCTS, COMPUTED USING

HIGHEST CROSS-ELASTICITIES W.R.T. THE SAMPLE PRODUCTS, WHEN

CHOICE SET HAS ALL VARIANTS
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Table 9 have many more substitutes than the ones in Table 8. The

size of the elasticities is now much more reasonable, with all but three

of the own elasticities being single digit for the top selling products. It

appears that low market share products are more likely to have par-

ticularly large elasticities, such as the Mercedes S-class in Table 8, with

-51. This is possibly because revealed preference conditions constrain

taste parameters less for special (low market share) products than for

products in the more densely populated parts of characteristics space,

leading to bad estimates of these consumers’ preferences. For the higher-

selling products, elasticities largely appear reasonable. Some examples

of seemingly reasonable high cross elasticities between similar products

are the two SUVs, Range Rover and VW Touareg (1.28 and 0.34) or

Ford Mondeo and VW Passat (0.96 and 3.04).

Table 10 shows the ten best substitutes for four randomly chosen high-

selling products in a densely populated area of characteristics space.

The substitutes are ranked according to their elasticities with respect to

the price of the sample car. (I also tried to rank substitutes using de-

rivatives or displacement ratios, but this did not make much of a dif-

ference.) To the left are best substitutes for one-variant case and to the

right is the many-variants case. The number of substitutes that are com-

mon to the two cases is 6 out of 10 for the VW Golf, 5 for the Toyota

Avensis, 3 for the Ford Focus, and 2 for the Audi A4. As expected, the

inclusion of all variants appears to make a difference.

D. Discussion

The method of this paper could be useful for other markets where

consumers face a large number of alternatives, such as housing. See

Hong (2013) and Cho and Kim (2013) for other approaches.

The data used in this paper are of a particularly simple form: one cross

section, where the unit of observation is a product, and no consumer-

level information. It is therefore natural to ask what use could be made

of more detailed data, such as several time periods or markets, and/or

demographic information such as age, sex or income of consumers.

The method used in this paper can easily be adapted to obtain esti-

mates of taste distributions in separate demographic groups, by simply

replacing the market shares in equation (18) with the corresponding

within-demographic-group market shares. In combination with the ex-

tensions for multiple time periods discussed below, this approach could

be valuable for out-of-sample prediction exercises where demographics
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vary.

Data from multiple markets or time periods could potentially be used

to tighten the bounds obtained in this paper, or to obtain information

about the distribution of tastes within each A-set (the set of taste vectors

which would rationalise the purchase of a given product).

If we consider the revealed preference conditions given in equation

(7), it might be tempting to simply add to the system inequalities from

multiple years of data. Such a straightforward approach is not consistent,

however. Since the set of alternatives available presumably varies between

years, the revealed preference inequalities for two different years are not

statements about the same group of consumers. In principle, the set of

taste vectors simultaneously satisfying the revealed preference conditions

for two different years could even be empty.11

A more promising approach is to estimate the distribution of consumer

tastes in each year separately, as done in this paper, and then pool all

the draws obtained, and use the resulting distribution as the estimated

distribution of tastes, assuming that tastes in the population are constant

across the years. The drawback is that we would not get a perfect fit to

the data in any given year. The advantage, presumably, would be a

better ability to predict out of sample.

VII. Conclusion

I estimate a modified version of a model developed in Bajari and
Benkard (2005). The model has several advantages over the standard
Berry, Levinsohn, and Pakes (1995) (BLP) model. It can be estimated with
data from one time period and one market, unlike BLP which requires
many markets for identification. It can also accommodate products with
a larger number of characteristics than what is possible in BLP. I used
30. BLP assumes that taste coefficients are independently normally dis-
tributed. The Bajari-Benkard model makes no parametric assumptions
on the taste distributions, and allows for dependence between the dis-
tributions. In BLP, simulation error becomes a problem when the number
of products is very large (Berry, Linton, and Pakes 2004). In the Bajari-
Benkard model, a large number of products is an advantage for the
estimation of taste distributions.

(Received 10 September 2013; Revised 10 December 2013; Accepted 14

December 2013)

11 An example showing this can easily be constructed for the simple vertical

differentiation model set out in subsection III.A.
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