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This paper develops a new econometric tool for evolutionary auto- 

regressive models, where the AR coefficients change smoothly over 

time. To estimate the unknown functional form of time-varying coeffi- 

cients, we propose a modified local linear smoother. The asymptotic 

normality and variance of the new estimator are derived by extend- 

ing the Phillips and Solo device to the case of evolutionary linear 

processes. As an application for statistical inference, we show how 

Wald tests for stationarity and misspecification could be formulated 

based on the finite-dimensional distributions of kernel estimates. We 

also examine the finite sample performance of the method via nu- 

merical simulations.
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I. Introduction

Stationarity has been a fundamental assumption in time series an- 

alysis. In a stationary system, the statistical properties of the process do 

not change over time, which is desirable if the data measure deviates 

from what is believed to be a steady-state equilibrium. However, the 

notion of stationarity is best considered to be a mathematical idealiza- 
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tion, which is often too simple to capture the complicated dynamic struc- 

ture of economic time series. The availability of a longer historical data 

series only serves to increase doubts about the realism of such restric- 

tions. A more serious case occurs in practical applications when the 

period of interest tends to undergo frequent structural changes. For 

example, the long-term behavior of most economies tends to show what 

appears to be a slow but steady adjustment process, which cannot be 

properly analyzed by using the stationary approach. In this paper, we 

attempt to widen the empirical diversity of time series models by adopting 

a general class of evolutionary processes that can accommodate a variety 

of complicated forms of nonstationary behavior. Specifically, we extend 

the application of autoregressive (AR) models to a general nonstationary 

process by allowing the AR coefficients to change smoothly over time. 

An evolutionary AR(p) process, {yt }
n
t＝1 is defined to have the following 

data generation process (DGP):

1
( / ) ,

p

t k t k t
k

y t n yα ε−
=

= +∑
                      

(1)

where ε t is i.i.d. (0, σ ε
2).

Unrestricted nonstationarity, however, may entail a large of arbitrari- 

ness in the time-dependent behavior of a process, thus making the de- 

velopment of a meaningful asymptotic theory impossible. When a process 

is evolutionary, increasing the number of observations over time does 

not necessarily imply an increase in information. In particular, one cannot 

expect an ensemble average to be consistently estimated by the corres- 

ponding temporal average.1 To avoid pathological cases arising from ex- 

treme nonstationarity, we impose a number of restrictions on the process 

to control the extent of the deviations from stationarity. A natural ap- 

proach for of doing so is to embed a stationary structure on the process 

in the vicinity of each time point. This idea is similar to the notion that 

underlies the nonparametric technique of fitting a line locally to a non- 

linear curve. In this case, a smoothness condition on the curve is re- 

quired to validate the approach. Likewise, in the present case, the impos- 

ition of local stationarity involves the use of a smoothness constraint on 

the evolution of the nonstationary processes. A rigorous definition of 

1 This breakdown might seem to be linked more directly to the violation of ergo- 

dicity rather than stationarity. However note that under stationarity, one still has 

convergence to ensemble averages conditional on the invariant algebra.
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local stationarity was introduced by Dahlhaus (1996b), who imposed a 

smoothness condition in terms of the components in the spectral rep- 

resentation of the process. Heuristically, we can say that a process is 

locally stationary if the law of motion is smoothly time-varying. Thus, a 

locally stationary process behaves in a manner similar to a stationary 

process in the neighborhood of each instant in time, but has global non- 

stationary behavior. In example (1) above, the evolutionary AR model is 

locally stationary if the coefficients are smooth functions of time. Thus, 

as far as the local properties of this model are concerned, the statistical 

tools for stationarity can be used in deriving the asymptotics (see Section 

III).

The efforts to search for a framework for nonstationary processes have 

a long history in statistics and other applied sciences. In early empirical 

works, Granger and Hatanaka (1964) and Brillinger and Hatanaka (1969) 

advocated the spectral analysis of nonstationary processes in the fre- 

quency domain. Priestley et al. [(Cramér (1961), as well as Priestley (1965), 

Priestley and Tong (1973)] gave the first theoretical treatment of non- 

stationarity by defining time-dependent (or evolutionary) spectral density 

and estimating the spectral functions. The monograph by Priestley (1981) 

collected these main results. Since the early 1990s, the field has under- 

gone a number of breakthroughs following a series of developments by 

Dahlhaus (1996a, 1996b), which provided a more rigorous definition and 

treatment of locally stationary processes. Under this framework, Neumann 

and Von Sachs (1997) applied wavelet methods for the adaptive estima- 

tion of evolutionary spectra.

The main contribution of this paper is the presentation of the non- 

parametric kernel estimation of time varying AR coefficients of an evolu- 

tionary process defined in (1). Dahlhaus (1997) takes a fully parametric 

approach and assumes specific functional forms for AR coefficients when 

constructing a local Whittle likelihood. In a practical sense, however, 

assuming that we have no prior information on the time dependency of 

the parameters is reasonable. Empirical economists often find the deter- 

mination of evolution in the coefficients is itself of direct interest. Thus, 

the approach selected in this paper is to impose no functional restric- 

tions on the coefficients and to estimate them as unknown functions of 

time by applying nonparametric kernel methods. The second contribution 

lies in the novelty of the statistical theory used in deriving the asymptotic 

properties for locally stationary processes. In Dahlhaus (1997), the as- 

ymptotic results are derived based on a somewhat complicated theory of 

evolutionary spectra. By contrast, in our approach, the structure of the 
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local linear smoother makes the derivation of the limiting theory relatively 

easy. The intuition is that, in a limiting case, kernel methods enable us 

to be only concerned with local properties of locally stationary processes. 

Therefore, the well-established results for stationary processes can be 

utilized in deriving the asymptotics of the kernel estimates. To demon- 

strate the validity of this argument, the Phillips-Solo device (1992) is 

extended to the case of generalized linear representations of locally sta- 

tionary processes and is used intensively as a standard machinery.

The remainder of this paper is as follows: Section II defines the local 

linear smoother for estimating the AR coefficients. In Section III, an as- 

ymptotic theory is derived for the time-varying coefficient estimators, and 

tests for stationarity and misspecification are suggested based on finite- 

dimensional distributions of these estimates. Section IV reports results 

from numerical simulations. Technical conditions and proofs are collected 

in Section V.

II. Kernel Estimation

Throughout this paper, we will use the following notation to represent 

coefficients as functions of a rescaled time index, that is, α k,t,n＝α k(t/n) 

with α (․) : [0, 1] →R. To estimate α (․)≡(α 1(․), ..., α p(․))T, we apply 

the nonparametric method of local linear smoothing. If α k(․) is differ- 

entiable at u, α k(u) can be approximated locally by 

α k(t/n)≃α k(u)＋α ’k(u)(t/n－u).

Let Kh(․)＝(1/h)K(․/h) be a nonnegative weight function on a compact 

support. Given the observations { yt }t
n
＝
＋
1
p
, we define the kernel-weighted 

least squares estimator of α k(u)'s and their first derivatives, α ’(u)'s, as

0 1

1
2

0 1, 1 1

ˆ ˆ{ ( ), ( )}

arg min .
k k

p
k k k

n p p

t k k t k ha a t p k

u u

t ty a a u y K u
n n

α α =

+

−
= + −

′

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − + − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑     

(2)

Minimizing (2) with regard to the ak0's and ak1's yield α ̂(u) of the form

α ̂(u)≡[α ̂1(u), ..., α ̂p(u), α ̂’1(u), ..., α ̂’p(u)]T               
(3)

                   ＝(ZT WZ )－1(ZT Wy),
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where

y＝(yp＋1, ..., yn＋p)
T,

Yt－1＝(yt－1, ..., yt－p)
T, Y＝(Yp, ..., Yn－1)

T

Z＝[In, Dn]Y with Dn＝diag[(1/n－u), ..., (n/n－u)],

W＝diag[Kh(1/n－u), ..., Kh(n/n－u)].

The first p-elements of α ̂(u) are an estimate for the level of time-varying 

coefficients, and the remaining elements for their first derivatives. The 

latter property can be regarded as a unique benefit from local polynomial 

regression. By concentrating on the level of α (․), not on its derivatives, 

we denote the estimates of α (u) by

α ̂(u)＝[α ̂1(u), ..., α ̂p(u)]T＝E0(Z
T WZ )－1(ZT Wy),            (4)

where E0＝[Ip, Op×p]. If we rewrite Equation (4) in terms of sample mo- 

ments, the estimator is understood exactly the same way as the weighted 

least squares estimator in a linear model. Dh be a (2p × 2p) diagonal mat- 

rix, the first p diagonal elements of which are one with other diagonal 

elements being h. Observe that

α ̂(u)＝E0 Dh [(ZDh)T WZDh]
－1[(ZDh)T Wy]＝E0 Sn

－1 tn,           (5)

where Sn is a 2p × 2p matrix [Sn(i＋j－2)(u)]i, j＝1, 2, and tn＝[tn0(u), tn1(u)]T, 

with

1 1
1

1
1

1 1( ) , for 0,1, 2,

1 1( ) , for 0,1.

ln p
T

nl h t t
t p

ln p

nl h t t
t p

t tS u K u u Y Y l
n n h n

t tt u K u u Y y l
n n h n

+

− −
= +

+

−
= +

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

Here, the estimation errors, α ̂(r)－α (r), are not as simple as those as- 

sociated with the usual least squares framework, given that the coeffi- 

cients, α t, n, depend on the time index, t. The kernel estimate is subject 

to some bias as in the standard nonparametric method. The following 

lemma verifies this argument by decomposing the estimation error from 

the modified local linear fit into two parts: the bias term and the leading 

stochastic term.



SEOUL JOURNAL OF ECONOMICS468

Lemma 1. (Decomposition of Estimation Errors) Under E.1, 

α ̂(u)－α (u)＝Bn＋t ̃n＋op(h
2), for u in (0, 1),            (6)

where

2
1

0 2 3

1
0

0 1

1
1

[ , ] ( ),
2

,

[ , ] ,

1 1 .

T
n n n n

n n n
T

n n n
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t p

hB E S S S u

t E S
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α
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τ τ τ
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−

−
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−
= +

′′=

=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

III. Statistical Results

The asymptotic properties of our estimator, α ̂0(․), are derived by gen- 

eralizing the device of Phillips and Solo (1992) to the case of evolution- 

ary linear processes. In the Appendix, we first show that the locally sta- 

tionary AR process in (1) is a special case of evolutionary process and 

then develop the second-order Beveridge-Nelson (BN) decomposition for 

the sample moments of Sni and τ ̃nk in (6). Let a function φk : [0, 1] ↦ R 

be defined as φk(u)＝ limn→∞ φk([nu]/n) with φk(t/n)≡Σ j
∞
＝0 ϕ tj ϕ (t＋k)(k＋j ). 

Also, let Γ (u) be a symmetric p × p matrix with the h-th off-diagonal 

elements being [φh(u), ..., φh(u)]1×(p－h), for h＝1, ..., p－1, and the diag- 

onal, [φ0(u), ..., φ0(u)]1×p. The results in the following lemmas give the 

probability limits of Sni and the bias term, as well as the asymptotic dis- 

tribution of the stochastic term τ ̃n.
Lemma 2. Assume that E.1 through E.3 and A.2 hold. If h → 0 and nh

2

→∞, then, 

( )2 ( ) ( ), for 0,1, 2, 3.
p

l
nlS K r r dr u lεσ→ Γ =∫

Lemma 3. Assume that all the conditions in Lemma 2 hold. Then,

2 2
1 2

0 2 3[ , ] ( ) ( ).
2 2

p
T

n n n n K
h hB E S S S u uα μ α− ′′ ′′= →
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We then have to derive asymptotic distribution of the main stochastic 

term, E0 Sn
－1 τ ̃n. Given that E0 Sn

－1 converges to [Γ－1(u), Op×p] by Lemma 

2, we only have to deal with the first term of τ ̃n.
Lemma 4. Assume that E.1 through E.3 and A.1 hold. If h → 0 and nh

→∞, then, 

0 (0, ),
D

nnh Nτ → Σ

where Σ＝σ ε
4 (∫K 2 (r)dr)Γ (u).

Considering that Bn＝Op(h
2) and τ ̃n＝Op(1/√nh), the above results in- 

dicate that α ̂(u) is a consistent estimator when h → 0 and nh 2→∞. 

Notably, the asymptotic bias in Lemma 3 has the same form as the 

standard local linear fit. Lemma 3 and 4 yield the following theorem:

Theorem 5. Assume that E.1 through E.3 and A.1 through A.2 hold. If 

h → 0 and nh
2→∞, then, 

ˆ[ ( ) ( ) ] (0, ( )),
D

nnh u u B N uαα α− − → Σ

where Σ α(u)＝‖K‖2
2 Γ－1(u).

For a stationary AR(1) case, Γ (u) is simplified to be Σ j
∞
＝0 ϕ j

2
＝Σ j

∞
＝0 α 2j

＝1/(1－α 2), which implies that Σ α(u) of Theorem 5 can be interpreted 

as a nonparametric generalization of the asymptotic variance of ordinary 

least squares in a stationary AR model. Let ε ̂ t＝yt－Σ k
p
＝1α̂k(t/n) yt－k and 

σ̂ε
2＝Σ t

n
＝p＋1 ε ̂t2/(n－p). By Lemma 2, Γ (u) is consistently estimated by

                 Γ ̂(u)≡Sno(u)/σ̂ε
2＝σ̂ε

－2

and Σα(u) by

                                 σ̂ε
2.

Considering that α̂(u1) and α̂ (u2) are asymptotically uncorrelated for u1

≠u2, their joint distribution is also asymptotically normal with a covari- 

ance of diag{Σα(u1), Σα(u2)}. Thus, the normalized sum of squared errors 

over d time points follows a Chi-square distribution of degree dp.

2 21 1
02 2

ˆ ˆ( ) ( ) ( )nu K u K S uα
− −Σ ≡ Γ =

1

1 ,
n

h t t
t

tK u Y Y
n n=

⎛ ⎞ ′−⎜ ⎟
⎝ ⎠

∑
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Corollary 6. Assume that all the conditions in Theorem 5 hold. Then, 

1 2
0 0

1

ˆ ˆ[ ( ) ( ) ( )] ( )[ ( ) ( ) ( )] ( ),
d D

n i i n i i i i n i
i

H nh u u B u u u u B u dpαα α α α χ−

=

′= − − Σ − − →∑

where ui∈[0, 1], for all i＝1, ..., d.

Remark 7. (Tests for Misspecification and Stationarity) Corollary 6 

is related to the construction of a Wald test for misspecification. Con- 

sider the null hypothesis of H0 : α (ui)＝α *(ui) for all i＝1, ..., d, against 

the general alternative. A feasible Wald test statistic is given by

* 1 *
0 0

1

ˆ ˆ ˆˆˆ ˆ[ ( ) ( ) ] [ ( ) ( ) ],
d

n i i n i i n
i

H nh u u B u u Bαα α α α−

=

′= − − Σ − −∑
        

(7)

and follows a χ2(dp) asymptotically under the null hypothesis. Given that 

|α (ui)－α *(ui)|≠0 under the alternative, Ĥn goes to infinity as n →∞, 

that is, the test is consistent. In a similar manner, we can set up a test 

for stationarity against general nonstationarity by assuming a null hy- 

pothesis, H0 : α (ui)＝α * for all i＝1, ..., d. Considering that Corollary 6 

still holds for a constant coefficient case, the average of coefficient esti- 

mates converges to the true value, α *, at a faster rate than √nh under 

H0. The same effect can be achieved by applying least squares, the con- 

vergence rate of which is √‾n  under H0. In this case, the test statistics 

is given by

1
0 0

1

ˆ ˆˆˆ ˆ ˆ ˆ[ ( ) ] [ ( ) ],
d

n i n i n
i

H nh u B u Bαα α α α−

=

′= − − Σ − −∑
            

(8)

where α̅̂＝1/(n－p)Σ t
n
＝p＋1 α ̂0(t/n), or α̅̂＝(Yt’Yt)

－1Yt’yt. H̃n weakly converges 

to χ2 (dp) under H0, and the test is consistent, given that |α ̂0(ui)－ α̅̂| 
p
→ |α (ui)－(1/d) Σ j

d
＝1 α (uj)|≠0 under HA.

IV. Numerical Studies

Simulations. We perform a number of numerical simulations to investi- 

gate the finite sample performance of the kernel estimator defined in 

Section II. In the simulations, we used three different types of time-varying 
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FIGURE 1

SIMULATION RESULTS

AR(1) models with yt＝α (t/n)yt－1＋0.5ε t, t＝1, ..., n, where ε t are i.i.d  

N (0, 1) and

Model I: α (r)＝－1.6r＋0.8,

Model II: α (r)＝0.9cos(πr),

Model III: α (r)＝0.9sin(2πr).

For each model, we applied the local linear smoother to estimate the 

AR(1) coefficients and to report their basic statistical results. A set of 

simulated data with a sample size of n＝150 is generated from each 

model. We performed 2500 replications. For the kernel estimators, the 

Epanechnikov kernel function was used with a bandwidth, h＝bσ nn
－1/5, 

where σ n is a standard deviation of {t/n}t
n
＝1, and the constant b ranges 

from 1.4 to 2.5. Figure 1 shows the estimates for a typical sample along 

with asymptotic confidence intervals (CIs).

Considering the nonparametric nature of our smoothers, the estimators 

seem to work relatively well even in a sample as small as n＝150. Figure 

1(c) indicates that the estimation of a sinusoidal trend in the coefficient 

involves more biases than others. The constant coefficients in Figure 
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at 100 equidistant points in (0,1) at 100 randomly-chosen points in (0,1)

Pr. 94.6% 94%

TABLE 1

COVERAGE OF TRUE VALUES IN THE 95% CI (MODEL I)

Bandwidth nh
AMSE AMAE

p＝1 p＝1

0.6

0.9

1.2

1.5

1.8

9.6

14.4

19.2

24.0

28.8

0.16

0.13

0.12

0.11

0.11

0.13

0.11

0.10

0.10

0.09

OLS 0.59 0.52

TABLE 2

AVERAGE MEAN SQUARED/ABSOLUTE ERRORS

1(d) are efficiently estimated by the parametric least squares, but the 

nonparametric fits are close to the truth except at the boundaries. The 

asymptotic CIs cover the true functions at almost all points, but seem 

somewhat narrow, especially for the sinusoidal specification. This con- 

dition can be partly attributed to the disregarded biases in constructing 

confidence intervals. To verify with the asymptotic results of Theorem 5, 

we also compute the probability that the true coefficients are included 

in the 95 % asymptotic CIs in the case of Model I. Table 1 shows that 

the real coverage rate is close to the value suggested by theoretical as- 

ymptotic distributions. In Table 2, we summarize the average mean squared 

errors of kernel estimates for various bandwidth choices when the true 

DGP is Model II.

V. Conditions and Proofs

A. Section II  

Conditions:

E.1. The function {α k(․)}k
p
＝1 is twice continuously differentiable u with 

uniformly bounded second-order derivatives, and the roots of Σ k
p
＝1

α k(u) zj are uniformly bounded away from the unit circle.

E.2. The kernel K(․) is a continuous symmetric nonnegative function 
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on a compact support, satisfying supr|K(r)|p＝‖K‖p
∞＜∞.

E.3. ∫K(r) dr＝1, μ K
2＝∫K(r) r2dr＜∞, ∫K2(r) dr＝‖K‖2

2＜∞, and ∫K2(r) 

r
2dr＜∞.

Proof of Lemma 1. From the basic equations: with E1≡[Op×p, Ip]

E0(Z
T WZ )－1 (ZT WZ ) E0

T
＝Ip, ZE0

T
＝Y,

E0(Z
T WZ )－1 (ZT WZ ) E1

T
＝Op×p, ZE1

T
＝DnY,

it follows that

α (u)＝E0(Z
T WZ )－1 (ZT WZ ) E0

Tα (u)＝E0(Z
T WZ )－1 ZT WYα (u),

and

0＝E0(Z
T WZ )－1 (ZT WZ ) E1

Tα ’(u)＝E0(Z
T WZ )－1 ZT WDnYα ’(u).

The estimation error is then

α ̂(u)－α (u)＝E0(ZT WZ )－1 (ZT Wy)－E0(Z
T WZ )－1 ZT WYα (u)

          ＝E0(ZT WZ )－1 ZT W[y－Yα (u)]＝E0(Z
T WZ )－1 ZT W[y－Yα (u)－

DnYα ’(u)]

          ＝E0Dh[(ZDh )T WZDh]－1(ZDh)
T W [y－Yα (u)－DnYα ’(u)]

          ＝E0[(ZDh)T WZDh]－1(ZDh)T W [y－Yα (u)－DnYα ’(u)].

Using the definition, [bλ]λ＝0,1≡[b1, b2]T, we rewrite the numerator of α ̂(u)

－α (u) as

(ZDh)T W [y－Yα (u)－DnYα ’(u)]

1 1 1
1 0,1

1 1 ( ) ( )
n p

T T
h t t t t

t p

t t tK u u Y y Y u u Y u
n n h n n

λ

λ
λ

α α
+

− − −
= + =

⎡ ⎤ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′= − − − − −⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦

∑

1 1
1 0,1

1 1 ( ) ( )
n p

T
h t t

t p

t t t tK u u Y Y u u u
n n h n n n

λ

λ
λ

α α α
+

− −
= + =

⎡ ⎤ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′= − − − − −⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦

∑

 
1

1 0,1

1 1 .
n p

h t t
t p

t tK u u Y
n n h n

λ

λ
λ

ε
+

−
= + =

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑

Considering the Taylor expansion of α (t/n) around u, the first term is 
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approximated by

2

1 1
1 2,3

1 1 ( ) ,
2

n p
T

h t t
t p

t t hK u u Y Y u
n n h n

λ

λ
λ

α
+

− −
= + =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ′′− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

∑

and the estimation error is thus decomposed into two parts:

α ̂(u)－α (u)

2
1

0 1 1
1 2,3

1 1[( ) ] ( )
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T T

h h h t t
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t t hE ZD WZD K r r Y Y u
n n h n

λ

λ
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− −
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⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
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⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑

B. Evolutionary Linear Processes and BN Decompositions

When the roots of Σ k
p
＝1α k(u) z j are uniformly bounded away from the 

unit circle, it follows under the conditions on the bounded derivatives 

for α k(․) and σ (․) (see Mélard 1985) that the difference equations in 

(1) have a solution of the form

, , ,
0

,t n j t n t j
j

y ϕ ε
∞

−
=

= ∑

where

, ,
0
| | , uniformly in and .j t n

j
t nϕ

∞

=
< ∞∑

Lemma P.1. If α k(․)'s are continuous and differentiable in u with a 

uniformly bounded derivative, then, for {yt,n} in (1), there exists a (uni- 

que) sequence of differentiable functions, {ϕ j(․)|ϕ j : [0, 1] → R }j
∞
＝0, such 

that

,
0

i) sup ( / ) (1/ ),t n j t j p
t j
y t n O nϕ ε

∞

−
=

− =∑
              

(9)

               0
ii) sup | ( / )|j

t j
t nϕ

∞

=
<∑ ∞.
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Proof of Lemma P.1. Let

1
2

0
( , ) 1 ( ) exp( ) and ( , ) | ( , )| .

2

p

k
k

A u u i k f u A uεσλ α λ λ λ
π

−

=

⎡ ⎤
≡ − − =⎢ ⎥

⎣ ⎦
∑

Observing that for a given u, f (u, λ ) is the spectral density function of 

a stationary AR(p) process, we define {ϕ j(․)}j
∞
＝0 to be a moving-average 

(MA) coefficient given by the MA representation of the AR process. Then, 

from the stability condition, ii) is satisfied, and, by construction, it holds 

that (σ ε/√2π )Σ j
∞
＝0 ϕ j(u)exp(－iλ j)＝A(u, λ ) for all u. The smoothness of 

ϕ j(․) stems from the differentiability of {α k(․)}. To show i), consider a 

spectral representation of (1),

0
, ,exp( ) ( ) ( ),

2t n t n Xy i t A dZ
πε
π

σ λ λ λ
π −

= ∫

where At
0
,n(λ )≡(σ ε/√2π )Σ j

∞
＝0 ϕ j,t,n(t/n)exp(－iλ j). Given that {yt,n} in (1)  

is locally stationary with a time-varying spectral density of f (u, λ ) by 

Dahlhaus (1996b, Theorem 2.3), it follows that, for some constant K1,

0 1
, 1

,
sup ( ) , , for all ,t n
t

tA A K n n
nλ

λ λ −⎛ ⎞− ≤⎜ ⎟
⎝ ⎠

which implies

0
, ,

0
sup ( / ) sup exp( )[ ( ) ( , )] ( )

2t n j t j t n X
t tj

ty t n i t A A dZ
n

πε
π

σϕ ε λ λ λ λ
π

∞

− −
=

− = −∑ ∫

                       

0
2 ,

,

1
3

sup ( ) ( , )

, for all ,

t n
t

tK A A
n

K n n
λ

λ λ

−

≤ −

≤

where ZX(λ ) is a stochastic process of orthogonal increments on [－π , π ] 

with ZX(λ )＝ZX(－λ ).

In a simple AR(1) case, ϕ j,t,n is equal to Π k
j
＝0 α [(t－k)/n], but ϕ j(t/n)＝

α (t/n) j. The above lemma suggests that Σ j
∞
＝0 [ϕ j,t,n－ϕ j (t/n)]ε t－j＝0 does 

not hold in a finite sample, but it does asymptotically.

The approximate MA representation in Lemma P.1 now enables us to 
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apply the Phillips-Solo device of the second-order BN decompositions to 

the sample moments of Snl and τ ̃nl in (6). Recall that a function, φh : [0,

1]↦R is such that

φh,j(t/n, (t＋h)/n)≡ϕ j(t/n)ϕ j＋h((t＋h)/n)

Conditions:

A.1. ε t is i.i.d (0, σ 2, κ4), where κ4 is a finite fourth cumulant.

A.2. (a) supt≤n Σ j
∞
＝0 j1/2 ϕ j

2(t/n)＜∞, (b) supt≤n Σ j
∞
＝0 j1/2[ϕ j’(t/n)]2＝o(n2).

Given that φ (․) is defined on compact set, it is bounded and square 

integrable,∫0

1 φh
2
(r)dr＜∞. The summability conditions in A.2(a) is, except 

for a number of generalizing modifications, of the same kind used in 

Phillips and Solo (1992) for the validity of the BN decomposition. A.2(b) 

is an additional condition required to restrict the changes in the time- 

varying coefficients. Notably, φh(․) is continuously differentiable, that is, 

φh(․)∈C2. We now show the validity of BN decomposition when applied 

to an evolutionary AR process. From Lemma P.1, it follows that

  
y

t
y

t+h≃
0 0

( / ) (( )/ )j t j k t h k
j k

t n t h nϕ ε ϕ ε
∞ ∞

− + −
= =

+∑ ∑

        

2

0
( / ) (( )/ )j j h t j

j
t n t h nϕ ϕ ε

∞

+ −
=

= +∑

          0 0,
( / ) (( )/ )j k t j t h k

j k k h j
t n t h nϕ ϕ ε ε

∞ ∞

− + −
= = ≠ +

+ +∑ ∑

        

2

0
( / ) (( )/ )j j h t j

j
t n t h nϕ ϕ ε

∞

+ −
=

= +∑

          0 , 0
( / ) (( )/ ) ,j j h r t j t j r

j r r
t n t h nϕ ϕ ε ε

∞ ∞

+ + − − −
= =−∞ ≠

+ +∑ ∑

where we assume that ϕ j (․)＝0 for all s＜0. Following the same argu- 

ment by Phillips and Solo (1992), we consider the second-order BN de- 

composition as follows:

By defining
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( )
0

( / , ( )/ ; ) ( / ) (( )/ ) ,jh j j h
j

t n t h n L t n t h n Lφ ϕ ϕ
∞

+
=

+ = +∑

we obtain

2

, 0
( / , ( )/ ; ) ( / , ( )/ ; ) .t t h h t h r t t r

r r
y y t n t h n L t n t h n Lφ ε φ ε ε

∞

+ + −
=−∞ ≠

= + + +∑
 
(11)

Observe that

φh＋r(t/n, (t＋h)/n; L)＝φh＋r(t/n, (t＋h)/n; 1)－φ ̃h＋r(t/n, (t＋h)/n; L)(1－L) 

                   ＝φh＋r(t/n, (t＋h)/n; 1)－(1－L)φ ̃h＋r(t/n, (t＋h)/n; L)

                    ＋[φ̃h＋r(t/n, (t＋h)/n; L)－φ̃h＋r(t－1/n, (t＋h－1)/n; L)]L,

where

      
,

0
( / , ( )/ ; ) ( / , ( )/ ) j

h r h r j
j

t n t h n L t n t h n Lφ φ
∞

+ +
=

+ = +∑

                         0 1
[ ( / ) (( )/ )] .js s h r

j s j
t n t h n Lϕ ϕ

∞ ∞

+ +
= = +

= +∑ ∑

This condition implies the two-level BN decomposition:

   φh＋r(t/n, (t＋h)/n; L)ε tε t－r

＝φh＋r(t/n, (t＋h)/n; 1)ε tε t－r－(1－L)φ ̃h＋r(t/n, (t＋h)/n; L)ε tε t－r         (12)
  ＋[φ ̃h＋r(t/n, (t＋h)/n; L)－φ ̃h＋r(t－1/n, (t＋h－1)/n; L)]ε t－1ε t－r－1

＝φh＋r(t/n, (t＋h)/n; 1)ε tε t－r－(1－L)φ ̃h＋r(t/n, (t＋h)/n; L)ε tε t－r＋op(1) 

the validity of which depends on the condition:

(i) φ ̃h＋r(t/n, (t＋h)/n; L)ε tε t－r∈L2,

(ii) [φ ̃h＋r(t/n, (t＋h)/n; L)－φ ̃h＋r(t－1/n, (t＋h－1)/n; L)]ε t－1ε t－r－1＝op(1).

To prove (i), we first consider

0 1
( / , ( )/ ; ) [ ( / ) (( )/ )] .h r t t r s s h r t j t r j

j s j
t n t h n L t n t h nφ ε ε ϕ ϕ ε ε

∞ ∞

+ − + + − − −
= = +
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Then, it suffices to show that
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To prove (ii), noting that
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we only need to show that
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First, observe that

        Δt [ϕ s (t/n)ϕ s＋h＋r ((t＋h)/n)

      ＝Δt ϕ s (t/n)ϕ s＋h＋r ((t＋h)/n)＋ϕ s(t－1/n)Δtϕ s＋h＋r ((t＋h)/n),

and then it holds that
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as n goes to ∞(with t＝[nr]), given that 

2
2( / ) [ ( )]t s

s
t n r
n

ϕ ϕΔ⎡ ⎤ ′→⎢ ⎥⎣ ⎦

and supt Σ s
∞
＝0 s1/2[ϕ s’(r)]

2＝o(n2).

Now, (11) and (12) imply
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 －(1－L)φ ̃h＋r(t/n, (t＋h)/n; L)ε t
2
－(1－L)                     (13)

        , 0
( / , ( )/ ; ) (1),h r t t r p
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t n t h n L oφ ε ε

∞

+ −
=−∞ ≠

+ +∑

Lemma P.2. (Validity of second-order BN decomposition) Under E.1, 

A.1, and A.2, the BN decomposition in (13) is valid, that is, 
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C. Section III

Proof of Lemma 2. We only prove the case for the representative 

element of Snl,
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BN decomposition in Lemma P.1, when applied to Snl,d, yields

Snl,d＝M1n＋M2n＋M3n,

where
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(i) Considering that ε t is i.i.d., the standard argument of Law of large 

numbers implies
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where the last equation is given by Dominated Convergence Theorem.

(ii) Considering that E(M2n)＝0 (from E(ε tε t－r)＝0, ∀r≠0), we show  

E(M2
2
n) → 0 for M2n＝op(1). First, observe that
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by the same argument used in Lemma P.2 [The second equality is at- 

tributed to (10)]. From E(ε tε t
φεsεs

φ )＝0, ∀t≠s, it follows that 
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the negligibility of which is evident from
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(iii) For the negligibility of M3n, we only show M31n＝ op(1). The same 

argument is valid to show M32n＝ op(1). Observe that
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⎡ ⎤+ − + −⎛ ⎞ ⎛ ⎞ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

2
1

1 ( 1/ , ( 1 )/ ; ) .
l

d r p
p nu p nuK p n p d n L

nh nh nh
φ ε+ −

⎡ ⎤− −⎛ ⎞ ⎛ ⎞− − − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

Both terms in the above equation are negligible, op(1), because φ ̃d＋r(t/n, 

(t＋d)/n; L)ε t
2
＝Op(1) by Lemma P.2, and K(․) is compactly supported 

and bounded by E.2.

Next, for the negligibility of M3”1n, we apply the Taylor expansion on K*

(s)≡K(s) si,

*
* *

2 2

1 ( ) 1( ) ,K sK s K s O
nh nh n h

′⎛ ⎞ ⎛ ⎞+ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and obtain

      

1 1 1 1
l l

h h
t t t tK u u K u u
n h n n h n

⎡ ⎤ ⎡ ⎤+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

    

* *1 1t nu t nuK K
h nh nh nh

− −⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    
*

2 2 3

1 1 (1), for all ,t nuK O o t
nh nh n h

−⎛ ⎞ ⎛ ⎞′= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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under the assumption that nh2 →∞. Now,

31
1 1 1 1 1sup

l

n
t

t tM K u u
h h n h n

⎡ ⎤ ⎡ ⎤+ +⎛ ⎞ ⎛ ⎞′′ ≤ − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

                 

1 1
l

t tK u u
h n h n
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

                 × |φ ̃d＋r (t－1/n, (t＋d－1)/n; L)]ε t
2
－1|

               ＝op(1),

given that φ ̃d＋r (t/n, (t＋d)/n; L)ε t
2
＝Op(1).

Proof of Lemma 3. By Lemma P.2 and E.3, it holds that

2
2

( )
,

( )

p p p
n

p p K

u O
S

O uεσ
μ

×

×

Γ⎡ ⎤
→ ⎢ ⎥

Γ⎢ ⎥⎣ ⎦

and

1
1 2

2 1

( )
.

( )

p p p
n

p p K

u O
S

O uεσ
μ

−
×− −

− −
×

⎡ ⎤Γ
⎢ ⎥→

Γ⎢ ⎥⎣ ⎦

By the continuous mapping theorem, the bias term,

22 1
0

3

1 ( )
2

T
n

n n T
n

S
h B E S u

S
α− − ⎡ ⎤

′′= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 2 2

2 2 1

( ) ( )( ) [ , ]
2 ( )

p p p K
p p p

p pp p K

u O uu I O
OO u

ε

ε

σ μα
σ μ

−
×

× − −
××

⎡ ⎤Γ ⎡ ⎤Γ′′
⎢ ⎥→ ⎢ ⎥

Γ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

           

2
2( ) ( ).

2 2
K

K p
u I uα μμ α

′′ ′′= =

Let Ft be the natural filtration of {yt } t
n
＝1.

Lemma P.3. (Central limit theorem for martingale differences: Corollary 

6) Let, for every n＞0, the sequence η n＝(η nk, Fk) be a square integrable 

martingale difference, that is, 
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E(η nk|Fk－1)＝0, E(η n
2
k)＜∞, 1≤k≤n              (14)

and let

2
0

1
( ) 1, 0.

n

nk
k
E n nη

=
= ∀ ≥ >∑

                  
(15)

The conditions

2
1

1
( | ) 1, as ,

n p

nk k
k
E nη −

=
→ → ∞∑ F

                   
(16)

2
1

1
( [| | )| ]) 0, as , 0,

n p

nk nk k
k
E I nη η ε ε−

=
> → → ∞ ∀ >∑ F

          
(17)

are sufficient for convergence

1
(0,1), as .

n D

nk
k

N nη
=

→ → ∞∑

Proof of Lemma 4. Considering the use of the Cramer-Wold device, 

it suffices to show

0 (0, ),
D

T T
nnha N a aτ → Σ

as n →∞, for any vector a∈Rp with unit Euclidean norm, ∥a∥2＝1. 

Fix such a vector a ∈Rp. Now that E(Yt－1 Yt
T
－1 εt

2
)＝E(Yt－1 Yt

T
－1 E(εt

2
|  

Ft－1))＝σε
4Γ {(t－1)/n}＜∞, we define

2 4
0

1

1 1 1( ) ( ) .
n p

T T
n n

t p

t tV u Var nha K u a a
nh h n nετ σ

+

= +

⎛ ⎞ −⎛ ⎞ ⎛ ⎞≡ = − Γ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

Denote the normalized errors by

1/2
1

1 1( ) .T
t n t t

tV u K u a Y
h nnh

η ε−
−

⎛ ⎞⎛ ⎞≡ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

In the following, we will check with each condition of Lemma P.3 for the 

asymptotic normality of ηt. The first part of (14) is evident from E (yt－1 ε t| 
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Ft－1)＝0, by A.1. Also,

2 1 2 41 1 1( ) ( ) T
t n

t tE V u K u a a
nh h n nεη σ− ⎛ ⎞ −⎛ ⎞ ⎛ ⎞= − Γ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

                   ＜∞,  for 1≤t≤n,

which implies (14). (15) follows immediately from the way we construct 

η nt and E (η n
2
t )＜∞, for 1≤t≤n.

Next, to examine the condition (16), note that

2 1 2 2
1 1 1

1 1

1

1 1( | ) ( )

( ) ( ) ,

n pn
T T

nt k n t t
t t p

T
n n

tE V u K u a Y Y a
nh h n

V u a V u a

εη σ
+

−
− − −

= = +

−

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

∑ ∑F

where 

2 2
1 1

1

1 1( ) .
n p

T
n t t

t p

tV u K u Y Y
nh h nεσ

+

− −
= +

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

Applying the results from Lemma 2, we obtain the convergence of Ṽn(u),

( )4 2( ) ( ) ( ).
p

nV u K r dr uεσ→ Γ∫

Also, by using integration by substitution and the Dominated Convergence 

Theorem,

( )

2 4

1

4 2

1 1 1( )

( ) ( ) ,

n p
T T

n
t p

T T

t tV u K u a a
nh h n n

K r dr a u a

ε

ε

σ

σ

+

= +

⎛ ⎞ −⎛ ⎞ ⎛ ⎞= − Γ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

→ Γ

∑

∫

which implies (16).

Finally, we turn to show (17). Given that Vn(u) → aT Σa＞0, there exists 

n0, such that Vn(u)＞(1/2)aT Σa, for all n＞n0. If we assume n＞n0, we 

obtain

2 1 2 2
1 1

1 1( ) T T T
t n t t t

tV u K u a Y Y a
nh h n

η ε−
− −

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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2
1 1

2 1
( )

T T
t t t

n

K tK u a Y Y a
V u nh h n

ε∞
− −

⎛ ⎞⎛ ⎞≤ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

   

2 2
1

2 1
( ) t t

n

K tK u a Y
V u nh h n

ε∞
−

⎛ ⎞⎛ ⎞≤ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

   

2
1 1
1 1

t t
tK u Y

nh h n
κ ε−

⎛ ⎞⎛ ⎞≡ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

where we used the facts that K(․) is bounded and compactly supported 

and ∥α∥2＝1. The last inequality relies on the Cauchy-Schwartz in- 

equality. Considering

 
2

1[ (| | )| ]nt nt tE Iη η δ −≥ F

2 1/22 1/2
1 1 1 1 1
1 1 [ ( )| ]t t t t k

tK u Y E I Y nh K
nh h n

κ ε ε δκ −−
− − −∞

⎛ ⎞⎛ ⎞≤ − ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

F

2 1/ 42 1/2 1/ 4 4
1 1 1 1
1 1 [ ( )| ]t t t k

tK u Y E I K nh
nh h n

κ ε ε δ κ −−
− −∞

⎛ ⎞⎛ ⎞≤ − ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

F

2 1/ 42 1/2 1/ 4 4
1 1 1 1 1
1 1 [ ( )| ],t t t k

tK u Y E I Y K nh
nh h n

κ ε δ κ −−
− − −∞

⎛ ⎞⎛ ⎞+ − ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

F

and

2
1 1 2[ ( )| ] ,

n

nt nt t n n
t
E I I Iη η δ −≥ ≤ +∑ F

2 1/42 1/2 1/4 4
1 1 1 1 1

1 1 [ ( )| ]
n

n t t t k
t

tI K u Y E I K nh
nh h n

κ ε ε δ κ −−
− −∞

⎛ ⎞⎛ ⎞= − ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ F

2 1/ 42 1/2 1/ 4 4
2 1 1 1 1

1 1 ( ).
n

n t t
t

tI K u Y I Y K nh
nh h n εκ σ δ κ −−

− − ∞

⎛ ⎞⎛ ⎞= − ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

Note that (i) because ε t is i.i.d. with E(ε t
2
)＜∞,

1/ 42 1/2 1/ 4 4
1 1[ ( )| ] (1),t t tE I K nh oε ε δ κ −−

−∞
≥ =F

where o(1) does not depend on t, and (ii) by Lemma 2,
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2 2
1

1 1 ( ( )),
n p

t
t

tK u Y tr u
nh h n εσ−

⎛ ⎞⎛ ⎞− → Γ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

which yields

I1n＝op(1).

Considering that In2≥0 for all n, and given that E(∥Yt∥
2)＜∞,

E(In2)≃
2 1/ 42 1/2 1/ 4 4

1 [ ] [ ] 1[ ( ))nu nuE Y I Y K nhεκ σ δ κ −−
∞

≥

              → 0.

This condition implies In2＝op(1), which completes the proof for

1
(0,1) as ,

n p D

nt
t p

N nη
+

= +
→ → ∞∑

that is,

(0, ).
D

nnh Nτ → Σ

Proof of Theorem 5. Lemma 4, along with the result of Lemma 2, 

yields

1
0ˆ[ ( ) ( ) ] (0, ),

D

n n nnh u u B nhE S N αα α τ−− − = → Σ

and

2 22 1 4 2 1 1
2 2

[ ( ) ] ( ) [ ( ) ] ( ).T
p p p pu O K u u O K uα ε ε εσ σ σ− − − − −

× ×Σ = Γ Γ Γ = Γ
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