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This present paper provides both theoretical and empirical analyses 

of multi-factor joint affine term structure models (JATSMs) in ex- 

plaining the co-movements of international term structure slopes. 

We extend the single-country affine term structure models of Dai 

and Singleton (2000) to a two-country setup. Using the efficient 

method of moments and reprojection analysis, we find that a JATSM 

with two square-root factors and one Gaussian factor performs best 

in capturing the correlation between the US and the UK term struc- 

ture slopes.
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I. Introduction

With the increased globalization of international financial markets, 

understanding the co-movements of cross-country term structures of 

interest rates is important for various market participants, such as policy 
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makers and practitioners. It has been well established that the dynamics 

of term structures can be classified into changes in the levels, slopes, 

and curvatures.1 Whereas most studies on international term structure 

focus on correlations between levels, the present paper investigates the 

co-movements of international term structure slopes. 

Co-movements of cross-country term structure slopes are critically 

important for various reasons. First, joint dynamics among internation- 

al term structure slopes are key to the management of international 

bond portfolios. Second, most large industrial firms regularly borrow 

from international financing markets. For these firms, knowledge of co- 

movements among international term structure slopes is important in 

deciding the optimal term structure of debt. Third, as suggested by 

Estrella and Mishkin (1997), term spreads between long- and short-term 

bonds reflect the markets’ expectations on future monetary policy. The 

future paths of foreign countries’ monetary policies play an important 

role in the determination of domestic monetary policy. Therefore, joint 

dynamics of term structure slopes across countries play an important 

role in the coordination of global monetary policies. Fourth, a long line 

of research has accumulated robust evidence that changes in term 

structure slopes can anticipate turning points in the business cycle.2 

For this reason, co-movements of international term structure slopes 

may be a good indicator for the global business cycle.

Existing literature on joint affine term structure models (JATSMs) 

focuses mainly on the implications of the determination of the exchange 

rate and the valuation of currency derivatives. Bansal (1997), Backus, 

Foresi, and Telmer (2001), Brandt and Santa-Clara (2002), Han and 

Hammond (2003), Benati (2006), and Brennan and Xia (2006) investigate 

the performance of their international term structure models in explain- 

ing the observed exchange rate dynamics. Recently, Ahn (2004), Inci and 

1 See Littermam and Scheinkman (1991) and Dai and Singleton (2000), among 

many others.
2 Estrella and Hardouvelis (1991) and Estrella and Mishkin (1997) show that 

the term structure slope is a good predictor of both future economic activity and 

inflation for the US and EU countries. See also Harvey (1991) for Germany, 

Davis and Henry (1994) for the UK, and Hu (1993) for the G-7 countries. Re- 

cently, Jung (2001) and Seo and Kim (2007) provide theoretical explanations for 

the predictive contents of term structure slopes. Jung (2001) provides a sticky 

price model that can explain the relationship between term structure slopes and 

real economic activity. Seo and Kim (2007) demonstrate that monetary policy 

rules play an important role in the prediction performance of term structure 

slopes on future inflation.
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Lu (2004), Mosburger and Schneider (MS) (2005), Inci (2007), Leippold 

and Wu (2007), and Egorov, Li, and Ng (ELN) (2008) investigate the joint 

behavior of cross-country term structures of interest rates. 

Although these papers consider various maturities of international yield 

curves, little effort has been made in examining the correlations between 

international term structure slopes. The present paper fills this gap. By 

extending the canonical model for single-country affine term structure 

models (ATSMs) provided by Dai and Singleton (DS) (2000) to a two- 

country setup, we investigate the performance of JATSMs in capturing 

the correlations of the term structure slopes of two countries. To the best 

of our knowledge, the current paper is the first to investigate directly 

the adequacy of various JATSMs in capturing the correlation dynamics 

of international term structure slopes. Given the two-country term struc- 

ture dynamics, we derive the implied stochastic process of the exchange 

rate using the technique developed by Backus, Foresi, and Telmer 

(2001) and Ahn (2004). Therefore, we simultaneously model the joint 

dynamics of term structure slopes of two countries and their exchange 

rates.

Traditionally, the estimation of JATSMs is challenging because they in- 

clude latent state variables, and there is no analytical expression available 

for the discrete conditional density. Recent advances in econometric 

methods have enabled researchers to address this issue using simulated 

method of moments techniques. The current paper uses the efficient 

method of moments (EMM) developed by Gallant and Tauchen (1996) to 

estimate the parameters of our JATSMs. This methodology has been 

widely used in the estimation of various multi-factor term structure mo- 

dels.3 As noted by Chernov, Gallant, Ghysels, and Tauchen (2003), the 

advantages of using the EMM are as follows: (1) it offers formal statistical 

tests of a model’s fit; (2) it offers formal diagnostics of a model’s inad- 

equacies; and, most importantly, (3) non-nested specifications can be 

compared in a meaningful way because the EMM forces all models to 

confront the same set of moment conditions. 

3 Anderson and Lund (1997) estimate the parameters of various short-rate 

models. Relying on the EMM method, DS investigate the empirical performance 

of single-country ATSMs. Ahn, Dittmar, and Gallant (2002) and Ahn, Dittmar, 

Gallant, and Gao (2003) estimate their single-country quadratic term structure 

models and hybrid term structure models, respectively, using the EMM estima- 

tion procedure. Bansal and Zhou (2002) and Bansal, Tauchen, and Zhou (2004) 

adopt the EMM method for the estimation of their discrete-time regime-switching 

term structure models.
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In particular, we complement the EMM specification tests using the 

reprojection analysis of Gallant and Tauchen (1998). The advantage of 

the reprojection method is that it enables us to compare directly the 

conditional density for the observed international term structure slopes 

implied by our JATSMs with a conditional density directly extracted from 

the data. Relying on this method enables us to investigate how well our 

JATSMs reproduce the co-movements of international term structure 

slopes compared with those implied by the data. As such, the present 

paper provides a comprehensive picture about the models’ performance 

in capturing the actual correlation dynamics of international term struc- 

ture slopes.

The current paper is organized as follows. In Section 2, we introduce 

our JATSMs. In Section 3, we discuss the data and provide a brief sum- 

mary of the EMM estimation procedure. The empirical results of the EMM 

estimation complemented by the reprojection analysis are provided in 

Section 4. Section 5 concludes the paper.

II. Theoretical Models

A. JATSMs

In this section, we establish two-country JATSMs. At the outset, we 

assume that the world economy consists of two countries, that is, a do- 

mestic country d and a foreign country f, and is represented by a fil- 

tered probability space (Ω , ℑ, F, P), where F＝{ℑt}0≤t＜T is the filtration 

of the information structure under the probability measure P. We also 

assume that the uncertainty in the world economy is driven by N in- 

dependent Brownian motions adapted to F. We denote the time t price 

of a zero-coupon bond denominated in currency k∈{d, f }, with the unit 

face value maturing at time T＝t＋τ by Pk(t, T ). In the absence of 

arbitrage opportunities in the world economy, the prices of zero-coupon 

bonds are given as follows:

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

( )( , ) ,
( )

P k
k t

k

M TP t E
M t                       

(1)

where Et
P
[․] denotes the expectation conditional on the information at 

time t, ℑt under the physical probability measure P. Mk(t, T ) is the 

global stochastic discount factor (SDF) expressed in currency k, which 
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discounts payoffs at time T into the time t value under the stochastic 

economy. Ahn (2004) demonstrates that if the world economy is complete, 

then the stochastic differential equations (SDEs) of the unique Mk(t, T ) 

result in 

ξ ′= − −( ) ( ) ( ) ( ),
( )
k

k k N
k

dM t r t dt t dw t
M t                  

(2)

where rk(t ) is the nominal instantaneous interest rate of country k, ξk(t) 

is an N-dimensional vector-valued function for k∈{d, f }, and wN(t ) is 

an N-dimensional vector of standard Brownian motions.

Following Ahn, Dittmar, and Gallant (ADG) (2002) and Dai and 

Singleton (2003), we directly explore the stochastic processes of the global 

SDFs by specifying the following three assumptions:4

(A1) the relationship between the interest rates, rd(t ) and rf (t ), and 

the underlying state variables, X(t );

(A2) the SDEs of the state variables, dX(t ); and

(A3) the diffusion processes of the global SDFs, ξd(t ) and ξ f (t ).

   

Extending a term structure model to a two-country setup requires an 

additional assumption on the factor structure of the world economy. We 

assume that the stochastic nature of the world economy is governed by 

N common factors, which can affect the bond prices of both countries. 

As noted, we extend the single-country ATSMs of DS to a two-country 

setup. First, we assume that the interest rates of the two countries, rd(t ) 

and rf (t ), are affine functions of the state variables 

δ δ δ δ= + = +' '
0 1 0 1( ) ( ) and ( ) ( ),d d f f

d fr t X t r t X t               (3)

where δ0
d
 and δ0

f
 are scalars, and δ1

d
 and δ1

f
 are N-dimensional vectors 

of constants. X(t ) denotes an N-dimensional vector of common factors. 

Second, we assume that X(t ) follows an affine diffusion under the phy- 

sical probability measure P

4 ADG and Dai and Singleton (2003) verify that any single-country term struc- 

ture model can be fully characterized by specifying these three assumptions.
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( )= Κ Θ − + Σ( ) ( ) ( ) ( ),dX t X t dt S t dw t 　            (4)

where Θ  is an N-dimensional vector of constants, K and Σ  are N- 

dimensional square matrices of constants, and S(t ) is an N-dimensional 

diagonal matrix, with the ith elements on the main diagonal given by

[ ] α β′= +( ) ( ),ii i iS t X t

 

where α i is a scalar and β i is an N-dimensional vector of constants. We 

impose both the identification and admissibility conditions provided by 

DS.5 Third, we assume that the diffusions of the global SDFs are

ξ λ ξ λ= =( ) ( ) and ( ) ( ) ,d f
d ft S t t S t                (5)

where λ d and λ f are N-dimensional vectors of constants. 

Given the assumptions described in Equations (3)-(5), the prices of 

zero-coupon bonds are given by an exponential affine function of the 

state variables

τ τ τ τ τ τ′ ′= + = +( , ) exp[ ( ) ( ) ( )] and ( , ) exp[ ( ) ( ) ( )].d d d f f fP t A B X t P t A B X t  

The yields of zero-coupon bonds are affine functions of the state vari- 

ables: 

τ τ τ τ τ τ τ τ τ τ′ ′= + = +( , ) ( )/ ( ( ) / ) ( ) and ( , ) ( )/ ( ( ) / ) ( ),d d d f f fyld t A B X t yld t A B X t

where Ad(τ ) and Af (τ ) are scalar functions, and Bd(τ ) and Bf (τ ) are N- 

dimensional vector-valued functions. Then, as shown by Duffie and Kan 

(1996) and DS, Ak(τ ) and Bk(τ ) satisfy the ordinary differential equations

τ
τ τ α δ

τ
′ ′∗ ∗

=

′⎡ ⎤= − Θ Κ + Σ −⎣ ⎦∑
2

1

( ) 1( ) ( ) ,
2

N
k k

k k k k i o
i i

dA
B B

d

[ ]τ τ τ β δ
τ

′∗

=

′= − Κ − Σ +∑ 2
1

1

( ) 1( ) ( ) ,
2

N
kk

k k k kk
k

dB B B
d

5 See DS for the details of these conditions. 
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with the initial conditions Ak (0)＝01×1, and Bk(0)＝0N×1. K
*
k＝K＋ΣΦk and 

Θ*
k＝(K*

k)－1[KΘ－ΣΨk] are the parameters of the SDEs of the state vari- 

ables under the equivalent martingale measure defined for country k, 

where Φk is an N × N matrix with the i th row given by βi’[λ
k ]i, and Ψk is 

an N × 1 vector with the ith element given by α i[λ
k ]i.

Therefore, the term structure slopes defined as the difference between 

the long and short maturity zero-coupon bond yields are given as 

              τ τ τ τ= −( , , ) ( , ) ( , )d l s d l d sSlope t yld t yld t

              and                                                 (6)

τ τ τ τ= −( , , ) ( , ) ( , ),f l s f l f sSlope t yld t yld t             (6)

where τi and τs denote long and short maturity, respectively, with τi＞τs.

B. Three-factor JATSMs

This section specifies each of the models investigated and presents 

their implications for stochastic correlation between the domestic and 

foreign term structure slopes. We focus only on the three-factor models. 

The choice of the number of factors is related to our empirical inves- 

tigation. Recently, MS evaluate the performance of their three-factor 

JATSMs in capturing the joint dynamics of the US and UK bond prices, 

whereas ELN explore the empirical performance of their four-factor mo- 

dels in explaining the joint behavior of the US and EU term structures.6 

Unlike these papers, we investigate the performance of JATSMs in cap- 

turing the joint dynamics of the international term structure slopes. As 

will be discussed later, our data consist of the US and UK term structure 

slopes, defined as the difference between the five-year and six-month 

yields for each country and the dollar－pound exchange rates. Therefore, 

our choice of three factors is not conservative. Following the notation of 

DS, let JAm(N) denote a JATSM with m common square-root factors 

and N－m common Gaussian factors. With three factors (i.e., N＝3), 

there exist four non-nested subfamilies of JATSMs: JA0(3), JA1(3), JA2

(3), and JA3(3). The current paper focuses only on JATSMs with m＞0. 

The family of JA0(3) is incapable of generating the stochastic second 

moments of the term structure slopes, which is clearly counterfactual. 

6 Except for ELN, most papers consider only three-factor models. See, for 

example, Backus, Foresi, and Telmer (2001), Brandt and Santa-Clara (2002), 

Ahn (2004), and Brennan and Xia (2006), among many others.
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a) JA1(3)

The family of JA1(3) is characterized by the assumption that one of 

the state variables derives the stochastic volatility of all three state 

variables. The assumptions of JA1(3) are as follows. First, rd(t) and rf (t) 

are affine functions of the three common state variables:

δ δ δ δ
= =

= + = +∑ ∑3 3
0 1 0 11 1

( ) ( ) and ( ) ( ).d d f f
d i i f i ii i
r t X t r t X t

         (7)

Equation (7) states that rd(t) and rf (t) can have different sensitivities to 

the same state variables. Second, the dynamics of X (t) are given as  

      

κ θ
κ κ κ
κ κ κ

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

1 11 1 1

2 21 22 23 2

3 31 32 33 3

( ) 0 0 ( )
( ) ( )
( ) ( )

dX t X t
dX t X t dt
dX t X t

         (8)

              

β
β

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

1 1

21 1 2

331 1

( ) 0 0 ( )
0 1 ( ) 0 ( ) .

( )0 0 1 ( )

X t dw t
X t dw t

dw tX t

Third, the market prices of factor risks are given as

λ
ξ β λ

λβ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟= + ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

1 1

21 1 2

331 1

( ) 0 0

( ) 0 1 ( ) 0 ,

0 0 1 ( )

d

d
d

d

X t

t X t

X t

λ
ξ β λ

λβ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟= + ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

1 1

21 1 2

331 1

( ) 0 0

( ) 0 1 ( ) 0 .

0 0 1 ( )

f

f
f

f

X t

t X t

X t

Applying Ito’s lemma to the theoretical term structure slopes described 

in Equation (6) yields the following instantaneous second moments for 

the two term structure slopes:

        ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )d s l d l d sVar t b b X t

( ) ( )τ τ β+ − +
2

,2 ,2 21 1( ) ( ) 1 ( )d l d sb b X t             (9)



MULTI-FACTOR JOINT AFFINE TERM STRUCTURE MODELS 397

                     ( ) ( )τ τ β+ − +
2

,3 ,3 31 1( ) ( ) 1 ( ) ,d l d sb b X t

         ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )f s l f l f sVar t b b X t

( ) ( )τ τ β+ − +
2

,2 ,2 21 1( ) ( ) 1 ( )f l f sb b X t              (10)

                     ( ) ( )τ τ β+ − +
2

,3 ,3 31 1( ) ( ) 1 ( ) ,f l f sb b X t

      ( )τ τ τ τ, ( , , ), ( , , )d s l f s lCov t slope t slope t

          ( ) ( )τ τ τ τ= − −,1 ,1 ,1 ,1 1( ) ( ) ( ) ( ) ( )d l d s f l f sb b b b X t
    (11)

          ( ) ( ) ( )τ τ τ τ β+ − − +,2 ,2 ,2 ,2 21 1( ) ( ) ( ) ( ) 1 ( )d l d s f l f sb b b b X t

          ( ) ( ) ( )τ τ τ τ β+ − − +,3 ,3 ,3 ,3 31 1( ) ( ) ( ) ( ) 1 ( ) .d l d s f l f sb b b b X t

Therefore, the second moments of the term structure slopes are rep- 

resented as an affine function of the square-root factor X1(t). The other 

two state variables cannot contribute to generating the heteroskedastic 

second moments of the term structure slopes. Investigating the role of 

the negative correlations among the factors is of interest in explaining 

the dynamics of the term structure slopes.7 Among the three JATSMs 

investigated in the current paper, JA1(3) is the most flexible in inducing 

the flexible correlation structure among the factors. In JA1(3), all the 

three factors can have both positive and negative correlations.8

The parametric restrictions of JA1(3) are given as

κ θ κ θ β β> > ≥ ≥ ≥11 1 11 1 21 310, 0, 0, 0, 0,

at least one of δ δ2 2( , )d f  is non-negative,

at least one of δ δ3 3( , )d f  is non-negative.

 

7 In their single-country affine setup, DS find that accommodating the nega- 

tive correlations among the factors is important in matching the higher moments 

of the US bond yields.
8 As demonstrated by ADG, the form of ATSMs requires a trade-off between 

the structure of bond price volatilities and admissible non-zero correlations of 

the factors. Admissibility of an ATSM requires non-negative correlations among 

the square-root factors. As such, an increase in the number of square-root fac- 

tors limits the flexibility of the ATSM in specifying correlations while giving more 

flexibility in generating heteroskedastic volatility.
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b) JA2(3)

The family of JA2(3) is characterized by the assumption that two of 

the state variables derive the stochastic volatility of all three state vari- 

ables. The assumptions of JA2(3) are as follows. First, rd(t) and rf (t) are 

affine functions of the three common state variables

δ δ δ δ
= =

= + = +∑ ∑3 3
0 1 0 11 1

( ) ( ) and ( ) ( ).d d f f
d i i f i ii i
r t X t r t X t

        (12)

Second, the dynamics of X(t) are given as 

    

κ κ θ
κ κ θ
κ κ κ

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

1 11 12 1 1

2 21 22 2 2

3 31 32 33 3

( ) 0 ( )
( ) 0 ( )
( ) ( )

dX t X t
dX t X t dt
dX t X t

 (13)

            β β

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

1 1

2 2

331 1 32 2

( ) 0 0 ( )
0 ( ) 0 ( ) .

( )0 0 1 ( ) ( )

X t dw t
X t dw t

dw tX t X t

Third, the market prices of factor risks are given as

λ
ξ λ

λβ β

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

1 1

2 2

331 1 32 2

( ) 0 0

( ) 0 ( ) 0 ,

0 0 1 ( ) ( )

d

d
d

d

X t

t X t

X t X t

λ
ξ λ

λβ β

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

1 1

2 2

331 1 32 2

( ) 0 0

( ) 0 ( ) 0 .

0 0 1 ( ) ( )

f

f
f

f

X t

t X t

X t X t

The parametric restrictions of JA2(3) are given as

           

κ θ κ θ κ κ θ κ θ κ
κ θ θ β β

+ > ≤ + > ≤

> ≥ ≥ ≥ ≥
11 1 12 2 12 21 1 22 2 21

33 1 2 31 32

0, 0, 0, 0,

0, 0, 0, 0, 0,

           at least one of δ δ3 3( , )d f  is non-negative.

The instantaneous second moments for the two term structure slopes 

are then given as
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      ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )d s l d l d sVar t b b X t

( )τ τ+ −
2

,2 ,2 2( ) ( ) ( )d l d sb b X t                        (14)

                   ( ) ( )τ τ β β+ − + +
2

,3 ,3 31 1 32 2( ) ( ) 1 ( ) ( ) ,d l d sb b X t X t

      ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )f s l f l f sVar t b b X t

( )τ τ+ −
2

,2 ,2 2( ) ( ) ( )f l f sb b X t                        (15)

                   ( ) ( )τ τ β β+ − + +
2

,3 ,3 31 1 32 2( ) ( ) 1 ( ) ( ) ,f l f sb b X t X t

   ( )τ τ τ τ, ( , , ), ( , , )d s l f s lCov t slope t slope t

       ( ) ( )τ τ τ τ+ − −,1 ,1 ,1 ,1 1( ) ( ) ( ) ( ) ( )d l d s f l f sb b b b X t
  (16)

       ( ) ( )τ τ τ τ+ − −,2 ,2 ,2 ,2 2( ) ( ) ( ) ( ) ( )d l d s f l f sb b b b X t

       ( ) ( ) ( ),3 ,3 ,3 ,3 31 1 32 2( ) ( ) ( ) ( ) 1 ( ) ( ) .d l d s f l f sb b b b X t X tτ τ τ τ β β+ − − + +

In Equations (14)-(16), X1(t) and X2(t) can generate the stochastic 

second moments of the term structure slopes. Therefore, JA2(3) is more 

flexible than JA1(3) in generating the stochastic second moments of the 

term structure slopes. However, JA2(3) is less flexible than JA1(3) in gen- 

erating the negative correlations among the factors. As shown by DS, the 

admissibility conditions require that the two square-root factors, X1(t) and 

X2(t), cannot be negatively correlated. In our specification, these restric- 

tions require that neither κ12 nor κ21 can have a positive value. On the 

contrary, the correlations between the square-root factor X1(t) or X2(t) and 

the Gaussian factor X3(t) can have negative signs.

c) JA3(3)

The family of JA3(3) is characterized by the assumption that three of 

the state variables derive the stochastic volatility of all three state vari- 

ables. The assumptions of JA3(3) are as follows. First, rd(t) and rf (t) are 

affine functions of the three common state variables

δ δ δ δ
= =

= + = +∑ ∑3 3
0 1 0 11 1

( ) ( ) and ( ) ( ).d d f f
d i i f i ii i
r t X t r t X t

       (17)

Second, the dynamics of X(t) are given as 
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κ κ κ θ
κ κ κ θ
κ κ κ θ

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

1 11 12 13 1 1
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Third, the market prices of factor risks are given as
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λ
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The parametric restrictions of JA3(3) are given as

                 

3

1
0, for 1, 2, 3,

0, for all , , 1, 2, 3,

0, 0 for 1, 2, 3.

ij ij

ij

ii i

i

i j i j

i

κ θ

κ
κ θ

=
> =

≤ ≠ =

> ≥ =

∑

Then, the instantaneous second moments for the two term structure 

slopes are 

               ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )d s l d l d sVar t b b X t

( )τ τ+ −
2

,2 ,2 2( ) ( ) ( )d l d sb b X t                 (19)

                            ( )τ τ+ −
2

,3 ,3 3( ) ( ) ( ),d l d sb b X t

               ( )τ τ τ τ= −
2

,1 ,1 1( , , ) ( ) ( ) ( )f s l f l f sVar t b b X t

( )τ τ+ −
2

,2 ,2 2( ) ( ) ( )f l f sb b X t                 (20)
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                            ( )τ τ+ −
2

,3 ,3 3( ) ( ) ( ),f l f sb b X t

           ( )τ τ τ τ, ( , , ), ( , , )d s l f s lCorr t slope t slope t

                ( ) ( )τ τ τ τ= − −,1 ,1 ,1 ,1 1( ) ( ) ( ) ( ) ( )d l d s f l f sb b b b X t
         (21)

                

( ) ( )
( ) ( )

τ τ τ τ

τ τ τ τ

+ − −

+ − −

,2 ,2 ,2 ,2 2

,3 ,3 ,3 ,3 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

d l d s f l f s

d l d s f l f s

b b b b X t

b b b b X t

As described in Equations (19)-(21), all factors can generate the sto- 

chastic second moments of the term structure slopes. Therefore, JA3(3) 

is the most flexible in inducing heteroskedastic volatility. Furthermore, 

JA3(3) is the only model that guarantees the positivity of the nominal 

interest rates rd(t) and rf (t). However, JA3(3) is incapable of generating 

the negative correlations among the factors. As discussed, admissibility 

conditions require non-negative correlations among the square-root fac- 

tors. Therefore, JATSMs cannot simultaneously allow for negative cor- 

relations among the factors and guarantee the positivity of the nominal 

interest rates. 

C. Dynamics of the Exchange Rate

To characterize completely the risk exposure of an international bond 

portfolio, we also need to model the dynamics of the exchange rate. If 

the world economy is complete and permits no arbitrage trading oppor- 

tunity, then there exists a unique exchange rate, which is defined as 

the ratio of the global SDFs, as shown by Bansal (1997), Backus, Foresi, 

and Telmer (2001), and Ahn (2004). 

=
( , )( ) ,

( ) ( , )
f

d

M t TY T
Y t M t T                        

(22)

　　　　　　　　　　　　　　　　

where Y(t) is the exchange rate defined as the number of units of do- 

mestic currency per one unit of foreign currency. Applying Ito’s lemma 

to Equation (22), given the dynamics of the global SDFs described in 

Equation (2), results in the following dynamics of the exchange rate:

  
( ) ( ) ( )2 23

1

1ln ( ) ( ) ( ) ( )
2

d f
d f i i i ii

d Y t r t r t X t dtλ λ α β
=

⎡ ⎤′= − + − +⎢ ⎥⎣ ⎦
∑

                 (23)
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         ( )3

1
( ) ( )d f

i i i ii
X t dw tλ λ α β

=
′+ − +∑ .

By Girsanov theorem, the dynamics of the exchange rate under the 

equivalent martingale measure Q are

( ) ( )λ λ α β
=

′= − + − +∑ 3

1
ln ( ) ( ) ( ) ( ) ( ),d f Q

d f i i i ii
d Y t r t r t dt X t dw t

     (24)

where                           . As pointed out by Ahn (2004), Equa- 

tion (24) states that the uncovered interest rate parity holds under the 

probability measure Q. However, it does not hold under the physical 

probability measure P. Equation (23) indicates that the exchange rate 

compensates for the difference not only between the interest rates but 

also between the market prices of factor risks required in the two coun- 

tries. Therefore, our two-country term structure model extends the un- 

covered interest rate parity to the physical probability measure.

III. Data and Estimation Method

A. Data

Our EMM estimation analysis is based on bi-weekly (Thursday-to- 

Thursday) observations for the US and UK term structure slopes and 

the dollar-pound exchange rate return from April 16, 1987 to June 28, 

2007 (528 observations). We retrieve the LIBOR rates of 6- and 12-month 

maturities and the swap rates for maturities of 2-5 years for the US 

and UK. We then use these rates to bootstrap zero-coupon LIBOR and 

swap yields according to Piazzesi (2001). Term structure slopes are de- 

fined as yld(t, τ l)－yld(t, τs), where yld ( t, τ l) is the 5-year zero-coupon 

yield and yld(t, τs) is the 6-month zero-coupon yield for each country. 

The bi-weekly return of the dollar-pound exchange rate is defined as 

100․(logY(t)－logY(t－1)), where Y (t) is the dollar-pound exchange rate 

obtained from Morgan Stanley Capital International. Both interest rates 

and exchange rate data are provided by Datastream.

Table 1 presents the summary statistics of the data. First, the US 

slope is steeper than that of the UK on average. As presented in Figure 

1, which depicts the time series of our data, the UK term structure has 

negative values during the late 1980s, early 1990s, and late 1990s, 

whereas the US slope is positive most of the time. The average of cur- 

τ τ= + Σ∫0( ) ( ) ( )
tQw t w t S d



MULTI-FACTOR JOINT AFFINE TERM STRUCTURE MODELS 403

 Mean
Std. 
Dev.

Skewness Kurtosis
Auto. 
Corr.

Min Max
JB 

statistics

U.S. 
slope

1.1964 0.9213  0.2193 1.9603 0.9854 −0.4901 3.2342 28.3324

U.K. 
slope

0.1811 1.1215 −0.4173 3.2788 0.9862 −2.8053 3.2646 16.7956

FX 
return

0.0433 1.9170 −1.1439 8.8942 0.0177 −14.234 4.6602 870.0952

TABLE 1

SUMMARY STATISTICS

Panel A: Summary statistics

 US slope UK slope FX return

U.S. slope

U.K. slope

FX return

1

0.4197

0.0047

0.4197

1

0.0160

0.0047

0.0160

1

This table presents the summary statistics of the bi-weekly data of the US 

and UK term structure slopes and the dollar-pound exchange rate return 

from April 16, 1987 to June 28, 2007 (528 observations). The term structure 

slopes are defined as yld (t, τ l )－yld(t, τs), where yld(t, τ l ) is the 5-year yield 

and yld(t, τ s) is the 6-month yield for each country. The dollar-pound ex- 

change rate return is defined as 100·(log Y(t)－log Y(t－1)), where Y(t ) is the 

dollar-pound exchange rate. The JB statistics refer to the Jarque-Bera test 

statistics. All figures are expressed in percentages.

Panel B: Cross-correlations

rency depreciation rates (bi-weekly log returns on the dollar price of the 

pound) is positive, which means that the dollar depreciates over the 

pound during our sample period. Second, the two term structure slopes 

are highly persistent, whereas the exchange rate return is relatively 

stationary. Third, the Jarque-Bera (JB) statistics in panel A of Table 1 

clearly suggests that none of the tri-variate series are normally distrib- 

uted, but they have different distributional characteristics. Both the UK 

slope and the exchange rate return are negatively skewed and leptokurtic, 

whereas the US slope is positively skewed and platykurtic. Many of these 

important dynamics of the data are recovered by the semi-nonparametric 

(SNP) density, which is presented in the following subsection.
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The plots present the US and UK term structure slopes and the dollar- 

pound exchange rate return from April 16, 1987 to June 28, 2007 

(528 observations). The term structure slopes are defined as yld(t, τ l )

－yld(t, τ s), where yld(t, τ l ) is the 5-year yield and yld(t, τ s) is the 6- 

month yield for each country. The dollar-pound exchange rate return 

is defined as 100·(log Y (t )－log Y (t－1)), where Y (t ) is the dollar-pound 

exchange rate. The data are sampled bi-weekly.

FIGURE 1

DATA

B. EMM 

The EMM method is briefly described here.9 As noted by Gallant and 

Tauchen (1996), the EMM method consists of a two-step process. The 
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first step is fitting a consistent estimator of the conditional density of 

the observed data. Let f (yt|xt－1, Θ) denote this approximation to the 

density, where yt denotes the current observations, xt－1 denotes the 

lagged observations, and Θ denotes a parameter vector of the density 

approximation. In the current paper, yt is a vector of the US slope, the 

UK slope, and the dollar-pound exchange rate return. We approximate 

this density using the SNP procedure of Gallant and Nychka (1987) and 

Gallant and Tauchen (1989). The SNP density used in this paper is a 

new version provided by Gallant and Tauchen (2007a). In this SNP 

density, a Gaussian vector autoregression (VAR) process captures the 

conditional first moments of the data, and a BEKK-GARCH of Engle 

and Kroner (1995) describes the conditional second moment dynamics 

of the data. As in previous versions of the SNP density, a Hermite poly- 

nomial expansion captures the deviations from conditional normality. 

Denoting a demeaned transformation of yt as zt＝R－x
1

t－1
(yt－ μxt－1

), where 

the conditional mean function μxt－1
 is a VAR on Lu lags,

   

1 0 1,tx tb B xμ
− −= +

   

and the conditional variance function Σxt－1
＝Rx

2

t－1
 is a BEKK-GARCH on 

(Lg, Lr ) lags:

1 1 10 0
1 1

( )( ) ,
g r

t t i t i t i i

L L

x i x i i t i x t i x
i i

R R Q Q P y y Pμ μ
− − − − − −− −

= =

′ ′ ′ ′Σ = + Σ + − −∑ ∑

where R0 is an upper triangular matrix, and the matrices Pi and Qi can 

be scalar, diagonal, or full matrices. The SNP density of zt is given by

[ ]
[ ]

2
1

1 2
1

( , ) ( )
( , ) ,

( , ) ( )
t t t

K t t
t

P z x z
f z x

P u x u du
φ

φ
−

−
−

Θ =
∫

( )1 10 0
( , ) ,z xK K
t t t tP z x a x zβ α

β αα β− −= =
= ∑ ∑

where P(zt, xt－1) is a polynomial in (zt, xt－1) of degree (Kz, Kx ), and φ (zt) 

denotes the standard normal density function. 

The second step in the EMM process involves estimating a parameter 

9 For details on the EMM, see Gallant and Tauchen (1996, 2001, 2007b).
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vector for our JATSMs. The procedure takes a set of initial starting 

values for the model and simulates a long set of data. In our case, we 

simulate 10,000 series of the US slope, the UK slope, and the log ex- 

change rates by the standard Euler scheme. The SNP model is fit to the 

simulated data and the scores of the fitted model with respect to the 

SNP parameters are estimated. Designate the parameters of the struc- 

ture model (i.e., JATSMs) as ρ and the estimated parameters of the SNP 

density as Θ̃. The scores of the fitted SNP model are used as moment 

conditions, m’(ρ, Θ̃), and the quadratic form

1( , ) ( , )m I mρ ρ−′ Θ Θ

is estimated, where Ĩ－1 denotes the quasi-information matrix from the 

quasi-maximum likelihood estimation of Θ. If a structural model is cor- 

rectly specified, then the statistic

1( , ) ( , )nm I mρ ρ−′ Θ Θ

is asymptotically chi-squared on lΘ－lρ degrees of freedom, where lΘ and 

lρ are the lengths of parameter vectors Θ and ρ, respectively.

IV. Estimation Results

This section discusses the EMM estimation results for the three 

JATSMs investigated in the current paper. The first subsection reports 

the estimation of the SNP score generator. The following subsections 

present the various diagnostics that enable us to understand the strengths 

and weaknesses of the different model specifications. We focus on the 

specification testing based on the quantitative quasi t-ratios obtained 

from the EMM estimation procedure in the second subsection. We then 

analyze the models further by examining their ability to match specific 

conditional moments of the data through the reprojection method. 

A. Estimation of the SNP Density 

We fit an SNP model to the US slope, the UK slope, and the dollar- 

pound exchange rate return using the procedure outlined by Gallant 

and Tauchen (2007a). The authors suggest an upward fitting strategy, 

in which the parameters of parts of the SNP model are tuned to min- 
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imize the Schwartz (1978) criterion [i.e., Bayes Information Criterion 

(BIC)] and are then used as starting points for the fitting of the next 

part of the model. In the present paper, we adopt a more general strat- 

egy for the determination of the variance function. As previously dis- 

cussed, the current version of the SNP model provided by Gallant and 

Tauchen (2007a) enables the matrices Pi and Qi to be scalar, diagonal, 

or full matrices. We examine the BIC values of all combinations of Pi 

and Qi given the VAR(1) mean dynamics. Except for the estimation of 

the variance function, we follow the upward fitting strategy. Our BIC- 

preferred SNP density is described by {Lu, Lg, Lr, Kz, Iz, Kx }＝{1, 1s, 1f, 4,

0, 0}.

Lu＝1 implies that one lag of the data is sufficient to describe the 

mean dynamics in the VAR. {Lg, Lr }＝{1s, 1f } suggests that the BEKK- 

GARCH(1, 1) model, where P1 is a three-dimensional matrix and Q1 is a 

scalar, describes the conditional second moments of the data. We need 

a fourth-order Hermite polynomial in standardized innovation to capture 

the shape deviations from conditional normality. Iz＝0 implies that the 

interaction terms in the orders of the polynomials are suppressed. Fi- 

nally, Kx＝0 suggests that incorporating the lags of the process is not 

necessary in modeling the coefficients of the Hermite polynomials. 

B. EMM Specification Tests 

Estimation results for the three JATSMs are presented in Table 2, 

which presents the parameter estimates and specification tests for each 

of the model. The bottom rows of Table 2 present the χ2 statistics for 

the model fit and the z-statistic for the goodness of fit that is 

asymptotically standard normal and adjusted for degrees of freedom.10 

Table 2 shows that all models are rejected, suggesting that our 

JATSMs are incapable of capturing the joint dynamics of the US slope, 

the UK slope, and the exchange rate return. Although all the models 

are sharply rejected, JA2(3) shows the best performance, followed by 

JA1(3). Interestingly, JA3(3), which is the best popular model in the 

international term structure modeling literature, shows the worst per- 

formance. The worst performance of JA3(3) clearly indicates that allowing 

the negative correlations among the factors plays a critical role in our 

data. As discussed, JA3(3) is the only model that cannot accommodate 

the negative correlation structure among the factors. The estimated 

10 The z-statistic is calculated as             and represents a degrees of 

freedom normalization of the χ2
 statistic.

2( )/ 2df dfχ −
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JA1(3) JA2(3) JA3(3)

δ0
d

 0.0143 
(0.0044)

δ0
d

 0.0362 
(0.0005)

δ0
d

 0.0288 
(0.0011)

δ0
f  0.0217 

(0.0030)
δ0

f –0.0050 
(0.0010)

δ0
f –0.0003 

(0.0019)

δ1
d

 0.0078 
(0.0002)

δ1
d

 0.0033 
(0.0008)

δ1
d

 0.0051 
(0.0003)

δ2
d

 0.0088 
(0.0004)

δ2
d

0.0018 
(0.002)

δ2
d –0.0068 

(0.0001)

δ3
d  0.0016 

(0.0002)
δ3

d  0.0015 
(0.0008)

δ3
d  0.0032 

(0.0002)

δ1
f

 0.0060 
(0.0006)

δ1
f

 0.0075 
(0.0006)

δ1
f

 0.0096 
(0.0004)

δ2
f

 0.0009 
(0.0007)

δ2
f

 0.0049 
(0.0002)

δ2
f

 0.0061 
(0.0005)

δ3
f -0.0059 

(0.0003)
δ3

f  –0.0001 
(1.9e-05)

δ3
f  0.0016 

(0.0006)

κ11  0.7159 
(0.1294)

κ11  6.8961 
(0.0410)

κ11  1.6578 
(0.0327)

κ21  2.4700 
(0.1432)

κ21 –1.8768 
(0.0406)

κ21 –1.9661 
(0.1165)

κ31  4.8469 
(0.6268)

κ31   9.1254 
(0.0787)

κ31  –9.1370 
(0.5192)

κ22  6.2050 
(0.2257)

κ12 –1.0133 
(0.0063)

κ12 –0.8311 
(0.0451)

κ32 –1.4908 
(1.2925)

κ22  0.7566 
(0.0162)

κ22  2.8267 
(0.1006)

κ32 –1.1843
(0.3148)

κ32 –1.0639 
(0.0102)

κ32 –0.1582 
(0.1646)

κ33  5.4570 
(0.1662)

κ33  0.5086 
(0.0469)

κ13 –0.0124 
(0.0085)

θ1  2.4819 
(0.0236)

θ1  2.9806 
(0.0102)

κ23 –0.1318 
(0.0235)

β21  1.8873 
(0.3325)

θ2  5.8042 
(0.1302)

κ33  2.4937 
(0.0586)

β31  0.4274 
(0.0152)

β31  2.9806 
(0.2542)

θ1  1.6918 
(0.0596)

λ1
d –0.0100 

(0.0002)
β32  5.2763 

(0.2535)
θ2  1.6090 

(0.0524)

(Table 2 Continued)

TABLE 2

PARAMETER ESTIMATES AND SPECIFICATION TESTS
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TABLE 2
(CONTINUED)

JA1(3) JA2(3) JA3(3)

λ2
d  0.0155 

(0.0002)

λ1
d  0.0422 

(0.0001)

θ3  7.5373 

(0.0568)

λ3
d –0.0264 

(0.0006)

λ2
d  –0.0159 

(5.9e-05)

λ1
d –0.0331 

(0.0002)

λ1
f  0.0047 

(0.0007)

λ3
d  0.0050 

(0.0002)

λ2
d  0.0104 

(0.0008)

λ2
f –0.0066 

(0.0005)

λ1
f

 0.0012 

(0.0005)

λ3
d

 0.0263 

(0.0009)

λ3
f

 0.0139 

(0.0003)

λ2
f –0.0006 

(0.0007)

λ1
f –0.0058 

(0.0008)

 λ3
f

 –0.0001 

(7.1e-05)

λ2
f –0.0030 

(0.0005)

  λ3
f

 –0.0009 

(8.5e-05)

χ2
52.93  48.23 54.74

df 16  15 14

p-value 
(percent)

0.0008
 

0.0023 0.0001

z-value 6.53  6.07 7.70

This table presents the parameter estimates and goodness-of-fit tests for 

the JATSMs. Standard errors are given in parentheses. The last four rows 

report the χ2 statistics for the goodness of fit of the models, the degrees of 

freedom, p-values, and corresponding z-values.

parameters for k21 and k31 of JA1(3) are 2.4700 and 4.8469, respective- 

ly, and they are highly significant. These results indicate that the two 

Gaussian factors, X2(t ) and X3(t ), are negatively correlated with the 

square-root factor X1(t ). Similarly, the estimated value for k31 of JA2(3) 

is 9.1254 and is highly significant. 

The superior performance of JA2(3) over JA1(3) reveals that the sto- 

chastic volatility factors also play an important role in fitting the ob- 

served joint dynamics of the data. In JA2(3), the two square-root factors, 

X1(t ) and X2(t ), contribute to generating the stochastic second moments 

of the data, whereas only the first factor, X1(t ), can induce the stochas- 

tic volatility in JA1(3). Therefore, our finding suggests that the theoretic- 

al trade-off of JATSMs in generating the negative correlations among 

the factors and the stochastic second moments of the data hampers 
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their empirical performance. Although MS and ELN commonly find similar 

results for international term structure level data, our results are new 

because these papers do not directly investigate the performance of 

their JATSMs in explaining international term structure slopes. 

Investigating the sensitivities of the interest rates to the three com- 

mon factors is of interest. For JA1(3), the estimated sensitivity of the UK 

slope to the second factor is close to zero (0.0009) and is not signifi- 

cant, whereas the sensitivity of the US slope to the second factor is 

0.0088 and is highly significant. For JA2(3), the sensitivity of the UK 

slope to the third factor is far less than that of the US slope. Therefore, 

there seem to be clear differences in the magnitudes of the factor sensi- 

tivities of the interest rates.

Additional insight into the performances of the models can be derived 

from analyzing the scores of the best model fits with respect to the SNP 

parameter vector. Table 3 reports the quasi t-ratios for the 40 moment 

conditions for the models. For a reasonable model specification, these 

40 scores should be close to zero. Gallant and Long (1997) and Tauchen 

(1998) show that a quasi t-ratio above 2.0 in magnitude indicates that 

the model fails to explain the corresponding score.

Table 3 suggests that all the models perform fairly well in capturing 

the mean dynamics of the VAR part of the fitted SNP density. None of 

the models have t-ratios greater than 2.0 in magnitude. However, note 

that our evidence does not indicate that the term structure factors 

alone can explain the mean dynamics of the exchange rate because we 

estimate the models relying on both the exchange rate data and the 

structure slopes data.11

The scores with respect to the BEKK-GARCH terms reveal interesting 

patterns. JA2(3) has no t-ratio greater than 2.0 and shows the best 

performance in capturing the second moment dynamics of the data. 

JA1(3) has two t-ratios greater than 2.0. JA1(3) has some difficulty in 

matching the second moment dynamics of the data, suggesting that one 

square-root factor is insufficient to capture correctly the variance dy- 

namics of the data. Interestingly, JA3(3) has one t-ratio greater than 

2.0. This result shows the importance of the negative correlations among 

the factors in fitting the conditional second moments of the data.  

The scores with respect to the Hermite terms of the two term struc- 

11 Brandt and Santa-Clara (2002) and Inci and Lu (2004) provide evidence for 

the existence of the exchange rate factors independent of the term structure 

factors.
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 JA1(3) JA2(3) JA3(3)

b0(1)

b0(2)

b0(3)

B(1, 1)

B(2, 1)

B(3, 1)

B(1, 2)

B(2, 2)

B(3, 2)

B(1, 3)

B(2, 3)

B(3, 3)

R0(1, 1)

R0(1, 2)

R0(2, 2)

R0(1, 3)

R0(2, 3)

R0(3, 3)

P1(1, 1)

P1(2, 1)

P1(3, 1)

P1(1, 2)

P1(2, 2)

P1(3, 2)

P1(1, 3)

P1(2, 3)

P1(3, 3)

Q1

α (0, 0, 1)

α (0, 0, 2)

α (0, 0, 3)

α (0, 0, 4)

α (0, 1, 0)

α (0, 2, 0)

α (0, 3, 0)

α (0, 4, 0)

α (1, 0, 0)

α (2, 0, 0)

α (3, 0, 0)

α (4, 0, 0)

−1.8529

 1.3085

−1.2212

 0.7850

−0.8233

 1.2208

−0.8635

 0.9776

 1.0707

 0.3009

 0.9583

 1.1961

 0.7175

 1.0789

 0.4358

−0.6658

 1.1248

−2.4415

 0.1791

−0.1015

−2.1794

−1.3645

 1.8760

−0.7125

−0.8166

 1.2552

−1.5801

−0.2039

−0.3727

−2.7764

 2.5538

 0.3541

−0.6430

 1.6541

−2.1009

−0.7047

−0.4516

 0.0788

−3.3193

−0.0146

−1.5209

 0.7853

−1.1312

 0.4072

 0.1297

 0.1253

−0.4909

 0.7779

 0.5307

 0.8221

 0.6106

 1.1785

−0.6524

 0.7622

 1.2543

 1.7817

 0.1101

−0.2609

−0.8282

 0.5850

 0.3066

−0.2583

 0.8738

 0.4089

 1.0253

 0.8030

 0.3052

−0.4496

−0.4554

−1.1339

 2.1458

−1.5917

−1.0837

−0.3301

−0.6093

−0.2133

−2.0295

−1.9965

−2.9556

−0.0532

−1.4656

 1.5486

−0.4935

 0.5874

−1.0707

 1.0113

 0.4488

 0.3958

 0.4250

−0.1920

 0.2447

 0.5834

−0.0957

 1.4234

 1.4343

−0.2272

 0.1030

−1.1442

−0.6052

 0.9130

−0.1835

−0.8006

 2.3578

 0.2752

 0.7196

 0.6889

−0.3518

−0.9072

−0.1643

−1.5168

 1.7850

−0.8327

 0.2793

 2.6150

−2.1172

−1.6836

−1.2015

−0.5268

−3.2596

−0.5964

This table presents the t-ratio diagnostics for the EMM scores. The t-ratios are the 
test statistics of the null hypothesis that the scores, with respect to the param- 
eters of the SNP density, are equal to zero. α( i, j, k) refers to the parameter before 
the polynomial term with the i

th
 degree of power on the US slope, the j

th
 degree of 

power on the UK slope, and the kth degree of power on the exchange rate return.

TABLE 3

DIAGNOSTIC T-RATIOS
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ture slopes reveal some important differences across the three JATSMs. 

First, JA3(3) performs worst in fitting the shape characteristic of the US 

and UK term structure slopes. Of the eight scores describing the con- 

ditional non-normality of the US and UK slopes, JA3(3) has three t- 

ratios greater than 2.0. However, both JA1(3) and JA2(3) have two t- 

ratios greater than 2.0, indicating that these models perform better than 

JA3(3) in capturing the Hermite terms. Overall, our results show the im- 

portance of the negative correlations among the factors in explaining 

the higher moment dynamics of the two term structure slopes. However, 

our results also indicate that none of the three models are able to match 

the higher moments successfully. 

The t-ratios with respect to the Hermite terms of the exchange rate 

clearly show that JA3(3) performs best in explaining the shape charac- 

teristic of the conditional density for the exchange rate return data. 

JA3(3) has no t-ratio greater than 2.0, indicating that this model is cap- 

able of capturing the higher moments of the exchange rate return data. 

Interestingly, JA1(3) shows the worst performance. Among the four 

Hermite scores for the exchange rate return data, two are significant for 

JA1(3), and one is significant for JA2(3). This finding suggests that the 

negative correlations among the factors may not be a critical ingredient 

of the models in explaining the conditional skewness or the conditional 

kurtosis of the exchange rate data. On the contrary, the square-root 

factors seem to play an important role.

C. Reprojection 

We briefly summarize the reprojection method here. A completed dis- 

cussion is provided by Gallant and Tauchen (1998). The reprojection 

method provides additional diagnostics for the adequacy of the JATSMs. 

The idea behind the reprojection method is to characterize the dynamics 

of a given vector of observed variables conditional on its lags. In models 

where there are latent state variables, the reprojected conditional density 

provides a way to characterize the conditional density strictly in terms 

of observables. The reprojected density can be estimated by relying on 

simulated data for the data from a given estimated structural model. In 

our context, the reprojected density is the tri-variate conditional density 

for the two term structure slopes and the exchange rate return. 

Let p(yt|xt－1) denote the conditional density for the data implied by 

the candidate JATSMs, where yt denotes the contemporaneous data, 

and xt－1 denotes the lagged data. As no analytical expression of the 
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The plots present the reprojected conditional mean for JA1(3) against 

the projected conditional mean. The reprojected data are repre- 

sented by the dashed line, and the projected data are represented 

by the solid line. In the last plot, the dotted line represents the 

actual dollar-pound return.

FIGURE 2

PROJECTED AND REPROJECTED CONDITIONAL MEAN: JA1(3)

conditional density implied by JA1(3), JA2(3), or JA3(3) model is known, 

we cannot estimate it by p̂(yt|xt－1)＝p(yt|xt－1, ρ ̂n), where ρ ̂n denotes the 

estimated model parameters presented in Table 2. Gallant and Tauchen 

(1998) suggest using fK (ŷt|x ̂t－1, Θ̂) as an approximation of p̂(yt|xt－1), 

where {ŷt, xt̂－1} t
N
＝1 are simulated data generated by ρ ̂n, and fK (ŷt|x̂t－1, Θ̂) 
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These plots present the reprojected conditional mean for JA2(3) against 

the projected conditional mean. The reprojected data are repre- 

sented by the dashed line, and the projected data are represented 

by the solid line. In the last plot, the dotted line represents the 

actual dollar-pound return.

FIGURE 3

PROJECTED AND REPROJECTED CONDITIONAL MEAN: JA2(3)

is an SNP density with the K-dimensional parameter vector Θ̂. Gallant 

and Long (1997) show that fK (ŷt|x̂t－1, Θ̂) converges to p̂(yt|xt－1) as K 

goes to infinity. We estimate fK (ŷt|x ̂t－1, Θ̂) by re-estimating the param- 

eters of the SNP density using the same specification used to character- 

ize the observed tri-variate density for the US and UK slopes and the 
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These plots present the reprojected conditional mean for JA3(3) 

against the projected conditional mean. The reprojected data are 

represented by the dashed line, and the projected data are repre- 

sented by the solid line. In the last plot, the dotted line repre- 

sents the actual dollar-pound return.

FIGURE 4

PROJECTED AND REPROJECTED CONDITIONAL MEAN: JA3(3)

exchange rate return. 

Once the reprojected conditional density is estimated, specific moments, 

such as the conditional means, variances, and correlations implied by 

the model specification, can be computed. These conditional moments 

are simply continuous functions of the conditioning information (i.e., 
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These plots present the reprojected conditional volatility for JA1(3) 

against the projected conditional volatility. The reprojected data are 

represented by the dashed line, and the projected data are repre- 

sented by the solid line.

FIGURE 5

PROJECTED AND REPROJECTED CONDITIONAL VOLATILITY: JA1(3)

lagged data) used to estimate the reprojected density. Given the condi- 

tioning information, the implications of a given JATSM for any condi- 

tional moment of interest can be tracked down in the data and com- 

pared with the conditional moment implied by the unrestricted SNP 

density (i.e., the fitted SNP density for the observed data). Therefore, 

the reprojected conditional density can be used to evaluate the perform- 
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These plots present the reprojected conditional volatility for JA2(3) 

against the projected conditional volatility. The reprojected data are 

represented by the dashed line, and the projected data are repre- 

sented by the solid line.

FIGURE 6

PROJECTED AND REPROJECTED CONDITIONAL VOLATILITY: JA2(3)

ance of a JATSM in reproducing the particular moments implied by the 

data. In the current paper, we compare the one-step-ahead conditional 

means, volatilities, and correlations implied by the three JATSMs with 

those implied by the data. 

Figures 2-4 plot the conditional means implied by the fitted SNP 

model for the observed data and the conditional means implied by the 
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These plots present the reprojected conditional volatility for JA3(3) 

against the projected conditional volatility. The reprojected data are 

represented by the dashed line, and the projected data are repre- 

sented by the solid line.

FIGURE 7

PROJECTED AND REPROJECTED CONDITIONAL VOLATILITY: JA3(3)

three JATSMs. Consistent with the results of the EMM diagnostic t-ratios, 

all JATSMs are able to reproduce the VAR conditional mean dynamics 

of the data. In particular, JA2(3) can almost completely duplicate the 

mean dynamics implied by the data. JA1(3) slightly overestimates the 

conditional mean of the UK slope for the early 1990s. Similarly, JA3(3) 

slightly underestimates the conditional mean of the US slope for both 



MULTI-FACTOR JOINT AFFINE TERM STRUCTURE MODELS 419

the early 1990s and early 2000s of the sample period. However, the 

plots suggest that both JA1(3) and JA2(3) can also adequately track the 

mean dynamics. 

Figures 5-7 depict the conditional volatilities implied by the fitted 

SNP model for the observed data and the conditional volatilities implied 

by the three JATSMs. Panel A of each figure reports the conditional 

volatility of the US slope. First, panel A of Figure 5 indicates that JA1(3) 

is able to reproduce neither the level nor the shape of the volatility of 

the US slope. Overall, the conditional volatility of the US slope implied 

by JA1(3) is too smooth. Furthermore, JA1(3) cannot generate the high 

level of volatility observed in the 2000s. Second, panel A of Figure 6 

suggests that JA2(3) can reproduce the conditional volatility of the US 

slope. Third, panel A of Figure 7 suggests that JA3(3) shows intermedi- 

ate performance. Although JA3(3) performs better than JA1(3) in match- 

ing both the level and shape of the conditional volatility of the US slope, 

JA3(3) largely overestimates the volatility in the early part of our sample 

period. Panel B of Figures 5-7 reports the conditional volatility of the 

UK slope. The plots suggest that both JA1(3) and JA2(3) fail to repro- 

duce the volatility dynamics of the data. Panel B of Figure 5 suggests 

that JA1(3) is able to reproduce neither the level nor the shape of the 

conditional volatility of the UK slope. As presented in panel B of Figure 

6, although JA2(3) is able to track the shape of volatility, it severely 

underestimates the level of volatility in the early part of the sample 

period. Panel B of Figure 7 clearly shows that JA3(3) is good at repro- 

ducing the volatility of the UK slope. Although JA3(3) slightly overe- 

stimates the level of volatility observed in the 2000s, it performs best 

among the three models. Panel C of Figures 5-7 reports the conditional 

volatility of the exchange rate return. Similar to the results of the US 

and UK slopes, JA1(3) fails to reproduce the conditional volatility of the 

exchange rate return. JA3(3) is able to track the volatility of the ex- 

change rate return. However, JA3(3) has a problem in matching the vol- 

atility of the early part of the sample period. Panel C of Figure 6 in- 

dicates that JA2(3) is the best at capturing the conditional volatility of 

the exchange rate return. Although JA2(3) slightly underestimates the 

level of volatility for the entire sample, it can track the volatility path 

well. 

In summary, our reprojection results clearly suggest that JA1(3) is 

incapable of explaining the volatility dynamics for any of the tri-variate 

data. JA2(3) and JA3(3) perform similarly. Although not complete, JA2(3) 

and JA3(3) can adequately reproduce the conditional volatility of the 
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These plots present the reprojected conditional correlation for JA1(3) 

against the projected conditional correlation. The reprojected data 

are represented by the dashed line, and the projected data are re- 

presented by the solid line.

FIGURE 8

PROJECTED AND REPROJECTED CONDITIONAL CORRELATION: JA1(3)

data.

Panel A of Figures 8-10 compares the conditional correlation between 

the UK and US term structure slopes implied by the JATSMs with 

those implied by the data, which is the main focus of this paper. Our 

reprojection results clearly indicate that the three models show remark- 

ably different capabilities in reproducing the conditional correlation of 
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These plots present the reprojected conditional correlation for JA2(3) 

against the projected conditional correlation. The reprojected data 

are represented by the dashed line, and the projected data are re- 

presented by the solid line.

FIGURE 9

PROJECTED AND REPROJECTED CONDITIONAL CORRELATION: JA2(3)

the two term structure slopes. First, JA1(3) is not able to fit the cor- 

relation dynamics. JA1(3) has severe difficulty in matching the general 

level of correlation. Furthermore, conditional correlation reproduced by 

JA1(3) is too smooth. Therefore, JA1(3) fails to capture the shape of the 

correlation path. Second, JA3(3) performs slightly better than JA1(3). 

However, JA3(3) largely underestimates the level of correlation and 
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These plots present the reprojected conditional correlation for JA3(3) 

against the projected conditional correlation. The reprojected data 

are represented by the dashed line, and the projected data are re- 

presented by the solid line.

FIGURE 10

PROJECTED AND REPROJECTED CONDITIONAL CORRELATION: JA3(3)

cannot reproduce the shape of correlation dynamics in the early 1990s. 

In addition, JA3(3) fails to reproduce the tendency of increasing the 

correlation in the late 2000s. Third, JA2(3) performs best in reproducing 

the conditional correlation of the data. Our result in panel A of Figure 

9 indicates that JA2(3) does well in tracking the correlation dynamics. 

Although JA2(3) slightly underestimates the level of correlation in 1997 
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and 2007, it is capable of capturing both the level and shape of the 

conditional correlation between the US and UK term structure slopes. 

In summary, the results of the reprojection analysis conform largely 

to the results of the EMM specification tests. All the models are success- 

ful in capturing the mean dynamics of our tri-variate data. However, 

JA1(3) fails to reproduce the second moment dynamics of the data. Our 

result suggests that tracking the second moment dynamics implied by 

the data with only one stochastic volatility factor within an affine frame- 

work is insufficient. JA2(3) and JA3(3) show similar performance in fitting 

the volatility dynamics. However, JA2(3) performs best in reproducing 

the correlation dynamics between the US and UK term structure slopes.

V. Conclusion

In the present paper, we develop two-country JATSMs by extending 

the single-country ATSMs of DS to a two-country setup. Relying on the 

EMM estimation process complemented by the reprojection analysis, we 

find that JA2(3) performs best in explaining the correlation dynamics 

between the US and UK term structure slopes. Our reprojection analy- 

sis reveals that JA2(3) is able to track reasonably the correlation dyna- 

mics of the data. Both JA1(3) and JA3(3) have some difficulty in cap- 

turing the correlation dynamics captured by our preferred SNP density. 

The poor performance of JA1(3) suggests that there should be at least 

two common square-root factors to track the correlation dynamics rea- 

sonably. The inferior performance of JA3(3) compared with that of JA2(3) 

suggests that flexible correlation structures among the factors also play 

an important role in capturing the observed correlation between the US 

and UK term structure slopes.

Although we focus on the completely affine models of DS, we can easily 

extend our analysis to the essentially affine models of Duffee (2002) 

and the more flexible risk premium specifications of Cheridito, Filipovic, 

and Kimmel (2006). This task is reserved for future research.

(Received 27 October 2010; 2 December 2010; Accepted 3 December 

2010)
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