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I. Introduction1

This work is meant to offer a critical overview of the achievements 

and challenges ahead facing explicit formalizations of organizations as 

information-processing and problem-solving entities.

The importance of the information-processing arrangements is well 

acknowledged within both agency and capability-based theories of the 

firm, even if only the latter focuses on the problem-solving features of 

organizations.

Firms after all “do things” ―whether material as a car or more “imma- 

terial” as a software program or an airline reservation system― , try to 

improve over time what they do and quite often also try to innovate and 

find new things. “Problem-solving” is a synthetic notion covering both the 

current operations of an organization and its search for novel ones.

In this respect, note that most formal representations of organizations 

tend to offer highly blackboxed accounts of such activities. In that, agency 

models are an extreme case to the point where the whole activity of in- 

formation processing is compressed in some function maximization con- 

ditional on the appropriate processing of the available information while 

“problem solving,” in the above sense, is almost entirely neglected. On 

the contrary, here we shall survey those endeavours which try to account 

for organizational information processing and problem-solving in terms 

of explicit sequences of activities and procedures nested into specific or- 

ganizational arrangements prescribing “who send which signals to whom” 

and “who does what and in which sequence.”

The appreciative theories upon which such models draw represent a small

―but not negligible and growing―minority of the economic profession who 

place their “primitives” of the nature of economic organizations in their 

problem-solving features, in turn nested in ubiquitous forms of human 

“bounded rationality,” grossly imperfect processes of learning and diverse 

mechanisms of social distribution of “cognitive labor.” The roots of this 

approach can be found in the works of Herbert Simon, James March, 

Alfred Chandler, Richard Nelson, and Sidney Winter.2

The problem-solving activities of the firm can be conceived as com- 

1 The work draws upon other works of the authors, in particular: Cohen et al. 

(1996), Dosi, Nelson, and Winter (2000), Marengo and Dosi (2005), which the 

reader is referred to for further details.
2 See Chandler (1977), Cyert and March (1963), March and Simon (1993), 

Nelson (1991, 2008), Nelson and Winter (1982), and Simon (1962, 1981).
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binations of physical and cognitive acts, within a procedure, leading to 

the achievement of a specific outcome. Its internal organization deter- 

mines the distribution of the informational inputs across specific task 

units and, as such, the division of the cognitive labor. The general idea 

is that firms possess the specific problem-solving competencies associated 

with their own operational procedures and routines, in turn embedded 

into the patterns of intra-organizational division of labor and assignments 

of decision entitlements.

An illustrious antecedent of this view dates back, indeed, to Adam 

Smith’s “Pin Factory” example in The Wealth of Nations:

“One man draws out the wire, another straights it, a third cuts 

it, a fourth points it, a fifth grinds it at the top for receiving the 

head; to make the head requires two or three distinct operations; 

to put it on, is a peculiar business, to whiten the pins is another; 

it is even a trade by itself to put them into the paper; and the im- 

portant business of making a pin is, in this manner, divided into 

about eighteen distinct operations, which, in some manufactories, 

are all performed by distinct hands, though in others the same man 

will sometimes perform two or three of them.” (Smith 1776) 

How does one formalize these basic intuitions? 

It is fruitful to distinguish between two (complementary) classes of 

models according to two distinct objects of analysis. The first class in- 

cludes models mainly addressing information processing and learning. 

Here the focus is on the relation between organizational performance, 

learning patterns and the structure of information flows. Agents are 

adaptive learners who adjust their information processing capability (i.e., 

their knowledge of the environment) through local trial-and-error.

The second class includes models focusing upon the relationship be- 

tween the division of cognitive labor and search process in some problem- 

solving space, addressing more directly the notion of organizations as 

repositories of problem-solving knowledge. Here the focus is on the 

problem-solving procedures which the organization embodies. Indeed, 

managing an organization, designing and producing cars or software 

packages, discovering a new drug, etc. can be seen as complicated pro- 

blems whose “solutions” are made of a large number of cognitive and 

physical acts. These kinds of activities imply the coordination of large 

combinatorial spaces of components.

On the output side, components which make up an artifact can take 
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a number of alternative states: so, for example, in the case of the pro- 

duction of a car, one combines different characteristics of the engine, 

alternative designs, different materials, etc. At the same time, innovative 

search may be straightforwardly represented in form of combination of 

multiple “cognitive acts” eventually yielding the solution of the problem 

at hand, e.g., the discovery of a new molecule with the required char- 

acteristics, a reasonable and coherent software package, etc. Note that 

in both examples the existence of strong interdependencies among the 

components ― which often are only partially understood by all agents 

involved ― implies that the effect on the system’s performance of a 

change in the state of a single component depends on the values as- 

sumed by the other ones. An implication is also that in this kind of 

problems it is impossible to optimize the system by optimizing each 

single component.

By applying this view to organizational analysis one can conceive eco- 

nomic organizations as bundles of routines, procedures, rules character- 

ized by strong interrelations which often are opaque to organizational 

members. 

Notice, first, the partial “opaqueness” of the mappings between actions 

and outcomes is quite in tune with “garbage can” interpretation of or- 

ganizational dynamics (Cohen et al. 1972). 

Second, “interrelatedness” also lies behind plenty of evidence regarding 

the widespread difficulties in replication and transfers of incumbent or- 

ganizational arrangements (Zander and Kogut 1995; Winter and Szulanski 

1998, 2002). 

Third, an obvious implication of such relatively opaque interrelatedness 

is also that the introduction of a new routine which has proven superior 

in another situation might have negative effects on the performance of 

the organization if other interrelated components are not appropriately 

co-adapted (Marengo et al. 2000; Marengo and Dosi 2005).3 

II. Information Processing and Structural Learning

Let us start by considering those (still few) models whereby information- 

processing and problem-solving activities are represented by ensembles 

of condition-action (that is, “if... then...”) rules.

3 On the view of routines as stored and collectively shared problem-solving 

skills see, for example, Teece et al. (1997), Winter and Zollo (1999), Narduzzo et 

al. (2000), Pavitt (2002), Becker (2004), and Lazaric (2005).
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Marengo (1992) and Marengo (1996) present a model which focuses 

upon the modification of such information processing capabilities of in- 

dividuals or subunits within the organization, i.e., a process of “structural” 

learning. Agents are imperfect adaptive learners, as they adjust their 

information processing capabilities through local trial-and-error. This 

adaptive learning is (at least partly) driven by the information coming 

from the environment and/or from other members of the organization. 

Let

　

{ }1 2, ,..., NS s s s=

be the set of the N possible states of nature and

{ }1 2, ,..., kA a a a=

the set of the k possible actions the decision-maker can undertake. The 

payoff to the agent is given by a function:

Π : A × S → R

where the agent's payoff to action ai when the state of the world sh 

occurs will be indicated by π ih.

The action the agent chooses depends obviously on the level of its 

knowledge about the state of the world. The agent's state of knowledge 

(or information processing capabilities) can be represented by a collec- 

tion of subsets P(si)⊆S where P(si) is the set of states of the world 

which the agent considers as possible (or cannot tell apart) when the 

real state is si.

The basic component of this learning system is, as mentioned, a 

condition-action rule, where the execution of a certain action is condi- 

tional upon the agent's perception that the present state of the world 

falls in one of the categories it has defined in its mental model. The 

condition part is a category, that is a subset of the states of the world, 

and is activated when the last detected state of the world falls in such 

a subset. Practically, the condition is a string of N symbols (as many as 

the states of the world ) over the alphabet {0, 1} and it is satisfied 

whenever the last state of the world corresponds to a position where a 

“1” appears. All in all, the condition:
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{ }1 2... with 0,1N ic c c c ∈

is satisfied when, if sk is the last observed state of the world, we have 

ck＝1. Thus, a set of conditions defines a subset of the power set of S. 

It is important to notice that each condition defines one subjective state 

(or category) of the world, as perceived by the agent, and defines its 

relationship with the objective (true) states of the world. This relation- 

ship remains anyway unknown to the decision maker, who is aware 

only of its subjective states.

The action part is instead a string of length k (the number of the 

agent's possible actions) over the same alphabet and with the following 

straightforward interpretation:

{ }1 2... with 0,1k ia a a a ∈

which has one and only one position which equals “1,” ah＝1, meaning 

that the action “h” is chosen, and “0's” everywhere else.

The decision maker can be therefore represented by a set of such 

condition-action rules: 

{ }1 2, ,..., qR R R R=

where:

{ }1 2 1 2: , ... ... with , 0,1 .i N k i hR c c c a a a c a⇒ ∈

Each rule is assigned a “strength” and a “specificity” measure.

Strength basically measures the past usefulness of the rule, that is 

the rule's cumulated payoff. Specificity measures the strictness of the 

condition: the highest specificity (or lowest generality) value is given to 

a rule whose condition has only one symbol “1” and therefore is satisfied 

when and only when that particular state of the world occurs, whereas 

the lowest specificity (or the highest generality) is given to a rule whose 

condition is entirely formed by “1's” and is therefore always satisfied by 

the occurrence of any state of the world.

In this model, at the beginning of each simulation the decision maker 

is supposed to be completely ignorant about the characteristics of the 
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environment he is going to face: all the rules initially generated have 

the highest generality, meaning that all their conditions are formed en- 

tirely by 1's. The action parts are instead randomly generated.

The decision maker is also assumed to have limited computational 

capabilities, therefore the number of rules stored in the system at each 

moment is kept constant and relatively small in comparison to the com- 

plexity of the problem which is being tackled.

This set of rules is processed in the following steps throughout the 

simulation process:

1. Condition matching: a message is received from the environ- 

ment which informs the system (the agent or a structured collection 

of them) about the last state of the world. Such a message is com- 

pared to the condition of all the rules and the rules which are 

matched, i.e., those which apply to such a state of the world, enter 

the following step.

2. Competition among matched rules: all the rules whose con- 

dition is satisfied compete in order to designate the one which is 

allowed to execute its action. To enter this competition each rule 

makes a metaphorical “bid” based on its strength and on its speci- 

ficity. In other words, the bid of each matched rule is proportional 

to its past usefulness (strength) and its relevance to the present 

situation (specificity):

( ) ( )1 2( , ) ( ) ,i i iBid R t k k Specificity R Strength R t= +

where k1 and k2 are constant coefficients. The winning rule is 

chosen randomly, with probabilities proportional to such bids.

3. Action and strength updating: the winning rule executes the 

action indicated by its action part and has its own strength re- 

duced by the amount of the bid and increased by the payoff that 

the action receives, given the occurrence of the “real” state of the 

world. If the j
th rule is the winner of the competition, we have:

( , 1) ( , ) ( ) ( , ).j j jStrength R t Strength R t Payoff t Bid R t+ = + −

4. Generation of new rules: the system must be able not only to 

select the most successful rules, but also to discover new ones. 

This is ensured by applying genetic operators which, by recombining 
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and mutating elements of the already existing and most successful 

rules, introduce new ones which might or might not improve the 

performance of the system. Thus new rules are persistently injected 

into the system by recombining and/or locally modifying existing 

knowledge.

　

Genetic operators generate new rules which ― typically but not neces- 

sarily ― explore other possibilities in the vicinity of the currently most 

successful ones. Hence, search is not completely random but influenced 

by the system's past history.4

In Marengo (1992) and Marengo (1996) two genetic operators have 

been used for the condition and one for the action part. The latter is a 

simple local search and is just a mutation in the “vicinity”: the action 

prescribed by the newly generated rule is chosen (randomly) in the close 

proximity of the one prescribed by the parent rule. For example, a mu- 

tation in the action part may probabilistically mutate the product type 

prescribed by the rule into one of the neighbouring product types.

The two operators used for the condition part deserve more attention 

because of their role in modelling the evolution of the state of knowledge 

embedded into the system. They operate in opposite directions:

- Specification: a new condition is created which increases the speci- 

ficity of the parent one. Wherever the parent condition presents a 

1, this is mutated (with small probability) into a 0; 

- Generalization: the new condition decreases the specificity of the 

parent one. Wherever the latter presents a 0, this is mutated (with 

small probability) into a 1.

Note that specification and generalization stand for two possible “cogni- 

tive” strategies which tend to drive the learning system towards, respect- 

ively, rules which apply to more specific states of the world and rules 

which instead cover a wider set of states of the world.5 

4 In incumbent models, new rules take the place of the currently weakest 

ones, so that the total number of rules is kept constant.
5 Different degrees of specification and generalizations can be simulated both 

by means of different combinations of these two genetic operators and by var- 

ying the coefficient k2 with which specificity enters the bid equation: the higher 

this coefficient, the more highly specific rules will be likely to prevail over general 

ones. The simulations discussed below use a specificity coefficient to summarize 

the overall inclination of the system toward the search for specific rules, such 
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The basic model outlined so far is used to study a variety of coordination 

problems possibly conditional on changing environmental states, thus ana- 

lyzing organizations which have to respond to an exogenous and changing 

environment by implementing some collective actions. 

Suppose for instance that a firm can produce a certain number of 

product types, demanded by an exogenous market, and that the pro- 

duction process is divided into several parts, each of them being carried 

out by a different “shop.” The problem is therefore to detect correctly 

which product type is being demanded (the “state of the world”) and to 

coordinate the actions of the shops so that the correct production process 

is implemented.

As an illustration, suppose that there exist eight possible product 

types, called respectively “1,” “2,” ..., “8.” The firm's production possi- 

bilities set is represented by sequences of operations which can be of 

two types (A and B). Such sequences have all the same length and map 

into a product type, which is conventionally designated by the number 

of operations of type A which are utilized in its production. For example 

the product of type “8” could be produced by all and only the produc- 

tion processes which contain eight operations of type A. Each produc- 

tion process is divided into two parts (of the same length) which are 

carried out separately by two “shops” (divisions). The problem of the 

firm is therefore to forecast the product type which will be demanded 

by the market and to implement the correct production process by co- 

ordinating the operations of the two shops. Suppose that the payoff is 

the following: if the firm produces the correct product type it receives a 

payoff of 5 units; if it does not produce the correct output it receives a 

negative payoff, given by the distance of the actual product type from 

the required one (for example, if the market demands type “7” but the 

firm produces type “5,” it will receive a payoff of -2).

Suppose now that the all the decision-making units which the organ- 

ization is made of are represented by agents whose knowledge of the 

state of the world evolves exactly in the way presented above.

Marengo (1992) and Marengo (1996) simulate the behaviour of a sim- 

ple but quite general organizational structure, visualized in Figure 1, 

composed by a “management” and two shops. The management observes 

the environmental message (the last state of the world), interprets it 

coefficient will represent both the value k2 in the bid equation and the proba- 

bility of application of the genetic operator of specification every time the genetic 

operator’s routine is called.
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　FIGURE 1

ORGANIZATIONAL INFORMATIONAL FLOWS (MARENGO 1992, 1996)

according to its, evolving, “model of the world,” and sends a message to 

the two shops.

Each of the two shops can, in general, observe three kinds of signals 

and develop an interpretative model for each of them. These signals are, 

respectively, the environmental signal (last observed state of the world), 

the message sent by the management (based on the latter’s interpretation 

of the environment), and the signal sent by the other shop (in the in- 

cumbent model, its last action). The latter two messages are coordin- 

ating devices, respectively a centralized and a decentralized one, aimed 

precisely at fostering coordination among actions, whereas the former 

allows the two shops to form their own independent (from the manage- 

ment one) models of the world.

The weights with which these three types of messages enter the shops' 

decision processes define the organizational balance between differenti- 

ation and commonality of knowledge, in turn shaped by the power dis- 

tribution along the organizational hierarchy.6

A high specificity coefficient for the condition part which classifies 

messages coming from the management (messages of type 2 in Figure 

1) implies that shops attribute great importance to the correct interpret- 

6 Such weights are represented by the specificity coefficients which express 

the agent's search for a precise model which interprets the corresponding type of 

message. A high specificity coefficient for the shops' condition parts which classify 

messages coming from the environment (messages of type 1B in Figure 2) implies 

that shops are aiming at building a detailed individual model of the world. A low 

coefficient implies instead that shops do not pay much attention to the envir- 

onment. When the coefficient is equal to zero we have an organization in which 

shops do not form any autonomous model of the world but rely entirely on the 

world's interpretation given by the management (messages of type 1 and 2).
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ation of the coordinating messages which are sent by the management. 

A low coefficient implies instead that shops are “free” to some extent to 

neglect hierarchical message. When the coefficient is equal to zero we 

have an organization without any form of centralized coordination, in 

which top management has no role.

Finally, a high specificity coefficient for the condition part which clas- 

sifies messages coming from the other shop (messages of type 3 in Figure 

1) implies that shops are attaching high importance to mutual, decen- 

tralized coordination. When the coefficient is equal to zero we have an 

organization without any form of decentralized coordination, i.e., no inter- 

shop communication.

In general the model shows that the architecture of such information 

flows plays a crucial role in determining the learning patterns and the 

performance characteristics of the organization. In particular simulation 

results from Marengo (1992) and Marengo (1996) include the following.

First, in stationary environments (i.e., when the state of the world 

does not change) agents can in fact achieve coordination without building 

any model of the environment and resorting only to trial-end-error cum 

adaptive selection of rules. Interestingly, note that if instead they try to 

learn, i.e., to build such a model and constantly improving it, they need 

also to learn a model for the interpretation of coordinating messages 

(messages 1 and/or 1B are not sufficient, and messages 2 or 3 are also 

needed).

Second, if the environment undergoes predictable changes (for example 

of a cyclical type), high specificity coefficients on the shops' conditions 

which classify environmental messages (message 1B) are needed in order 

to exploit the environmental regularities. Shops need to have a direct 

access to environmental information in order to develop the necessary 

decentralized learning.

Third, if the environment undergoes frequent and unpredictable changes, 

the organization has to develop stable routines which give a “satisficing” 

average result in most conditions. In this case decentralized learning is 

detrimental, because the stability of such routine is continuously jeop- 

ardized by individual efforts to grasp unpredictable environments. Shops 

are better off by relying on the management's message.

Under predictably changing environments the most appropriate or- 

ganization is the one which, by partly decentralizing the acquisition of 

knowledge about the environment, can achieve higher levels of sophis- 

tication in its model of the world, provided that coordination mechan- 

isms ― which are centralized ― are powerful enough to enable the or- 
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ganization to solve conflicts of representations. On the other hand, this 

very decentralization of the acquisition of knowledge can be a source of 

loss when it is more efficient for the organization to cling to a robust 

and stable set of routines. The explorations so far suggest that “Knightian 

uncertainty” requires strong coordination enforcing a set of coherent and 

robust routines over the entire organization. Autonomous and decentral- 

ized experimentation can only disrupt such a coherence.

In a somewhat similar modelling vein, Pentland and Reuter (1994) 

formalize organizational routines as a set of functionally similar patterns 

represented via rule-based grammar models. So a routine is a “gram- 

mar” which defines all the action patterns which are, so to speak, “legal,” 

having different action patterns as possible instantiations triggered by 

different environmental or intra-organizational signals (the “if ” part).

Moreover, it is quite straightforward to represent also the memory of 

an organization (both its collective “cognitive” memory and its “oper- 

ational” one) in terms of structured ensembles of “if... then...” rules (cf. 

the classic Walsh and Ungson 1991). With such apparatus, Dosi, 

Marengo, Paraskevopoulou, and Valente (2011) try to answer some 

questions about the relationship between memory characteristics, organ- 

izational architectures and patterns of environmental change (What are 

the effects of different distributions of memory elements within the or- 

ganizations? How does a shock like labor turnover act upon both oper- 

ational and cognitive memories?).

The bottom line is that one ought to consider the foregoing models as 

a template for a largely unexplored family of exercises which takes ser- 

iously on board (i) informational imperfections; and even more import- 

antly, differences in cognitive models, (ii) “boundedly rational” informa- 

tion processing; (iii) adaptive learning; and (iv) inter-organizational dif- 

ferences in information channels and decision rules. Indeed in the fore- 

going types of exercises, “blackboxing” is reduced to a minimum in so 

far as flows of information, cognitive dynamics, and decision acts are 

explicitly modelled. The downside rests precisely in the high dimension- 

ality of the space in which rules evolve and the related difficulty in 

identifying robust features of the mappings from rules to organizational 

performances, however defined.
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III. Models of Evolution in the Space of “Traits” and 

Problem Solving 

A way of overcoming such drawbacks involves precisely some “black- 

boxing,” in particular concerning the relationship between organization- 

al traits (including of course behavioural rules) and their actual expres- 

sions. Such modelling genre prominently includes a new family of evolu- 

tionary models of organizations inspired by biologist Stuart Kauffman's 

so-called “NK model” (Kauffman 1993). His model of selection and adap- 

tation in complex environments represents evolving entities characterized 

by non-linear interactions among their elements. In Kauffman (1993) 

the “NK-model” primarily deals with the evolution of populations of bio- 

logical entities described by a string of “genes,” but its formal structure 

allows for various applications in other domains. The model, indeed, 

has lent itself to a growing number of applications, extensions and mo- 

difications within the realm of organization studies. In this section we 

will present the general characteristics of the NK model and review some 

of its applications, well short of a comprehensive survey, with the primary 

purpose to flag some of the main results and incumbent challenges. 

A. The NK Model 

In the NK model, an entity (an organization for our purposes here) is 

represented as a string of (binary) traits linked together by a thread of 

interdependencies (referred to as “epistatic” relations in population gen- 

etics) which map into an equally stylized environment delivering perfor- 

mance feedbacks which, in turn, select in favor/against such configur- 

ation of traits. 

More formally, an organization is described by a string of N loci which 

refer to the set of traits (i＝1... N) that make up the organization (the 

system). For each element i, there exist Ai possible states.7 The set of 

all possible configurations (strings) of system’s elements A1 × A2 ×… AN 

is called the possibility space of the system. 

Next, a fitness function F : A1 × A2 ×… AN → [0, 1] is defined which 

assigns a (normalized) real number to each possible string as a measure 

of its relative performance. The fitness of the string is usually defined 

as the mean value of the fitness values of each element ( fi ), which are 

7 In most applications and in all those we consider in this paper, the number 

of states is reduced ― for the sake of simplicity ― to two: Ai∈{0, 1}.
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in turn randomly drawn from a uniform distribution between 0 and 1:

1

N

i
i
f

F
N

==
∑

The degree to which the fitness of the organization depends on the 

interaction effects among the traits is specified by the variable K, which 

refers to the number of “epistatic” relations among elements (in fact 

representing the structure of the system itself ). The existence of these 

relations implies that the contribution of one element to the overall 

fitness of the system is dependent both upon its own state and upon 

the state of K other elements. Thus, each trait can take on 2
K＋1 dif- 

ferent values, depending on the value of the trait itself and the value of 

the K other traits with which it interacts. Two limit cases of complexity 

can be distinguished, ranging from the minimum complexity when K＝

0, to the maximum complexity when K＝N－1. 

The distribution of fitness values to all possible configurations defines 

the fitness landscape of the system. This landscape can be explored in 

search for the configuration with the maximum fitness value, moving 

from one configuration (a point in the fitness landscape) to another, by 

changing the value of one element. This “adaptive walk” ends when a 

configuration is reached which has not immediate neighbours with 

better fitness.

Consider for example a system characterized by N＝3, Ai∈{0, 1} and 

K＝2. In this case, all eight (＝23) possible configurations can be de- 

picted on a cube. Each vertex of the cube represents a different con- 

figuration of the system; vertices that are connected to each other differ 

in only one trait. The fitness value of each configuration is, in this case, 

just the sum of the fitness value of each trait: (see Figure 2)

　

B. Organizational Dynamics on Complex Selection Landscapes

With such a model in mind, let us build upon one of the earliest 

applications of the “NK” approach to organizational analysis, presented 

by Levinthal (1997). In Levinthal’s simulations, populations of randomly 

generated structures (organizations) evolve on a fitness landscape, where- 

by the evolution is driven by variation selection and retention processes.

Variation, i.e., the generation of variety, is provided by two mechan- 

isms: 
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　FIGURE 2

EXAMPLE OF A PERFORMANCE LANDSCAPE 

(FROM SIGGELKOW AND LEVINTHAL 2005)

- local search: one-feature mutation with retention of strings with 

higher fitness value.

- Radical changes (“long jumps”): mutation of many (possibly all) 

features with retention of strings with higher fitness value.

Selection is obtained by simple birth and death process: organizations 

die with a probability inversely proportional to their relative fitness and 

are replaced by newly born ones. Some of these organizations are ran- 

domly generated, owing possibly no resemblance to the existing ones, 

while others are replica of existing successful organizations.

Information is maintained intertemporally by means of two mechan- 

isms: 

- retention: successful existing organizations have a higher probability 

of surviving. Their features tend therefore to survive with them. 

- replication: some of the newly born organizations, which replace 

bad performing ones which are selected out, are copies of the most 

successful existing organizations. The features of the latter tend 

therefore to spread in the population.

Consider a large population of randomly generated organizations which 

evolves according to the just mentioned mechanisms of selection and 

information reproduction but suppose that variation can be only local, 
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i.e., that only one bit at a time can be mutated for every organization. 

Local adaptation and selection will reduce the heterogeneity of the popu- 

lation: bad performers will be selected out and replaced by copies of 

good performers. In the meantime good performers will climb with local 

mutations the fitness peaks on whose slopes they are located.

However, the final outcome of the evolutionary process will crucially 

depend on the value of K, i.e., the complexity of the fitness landscape. 

With K＝0 local adaptation will quickly take all the organizations to the 

only global optimum: thus selection and adaptation will completely wipe 

out the initial heterogeneity of the population and yield convergence to 

unique optimal organizational form. For higher values of K the land- 

scape will display an increasing number of local optima on which subsets 

of organizations will converge according to their initial configurations. 

Selection and adaptation will reduce the heterogeneity but will never 

make it disappear.

This result, robust and general in this framework, must not be over- 

looked, as it provides a simple and intuitive explanation of the persistence 

of heterogeneity among firms, a piece of evidence widely reported by the 

literature but at odds with standard theories, according to which devi- 

ations from the only best practice should be only a transient property 

inevitably due to fade away as market selective forces operate. Note also 

that as K increases not only does the number of local optima increases, 

but also the size of the basin of attraction of each of them tend to shrink. 

It could well be therefore that none of the organizations might be located 

in the basin of attraction of the global optimum and therefore no or- 

ganization will ever find the globally optimal configuration.

In complex environments diversity of organizational forms can even 

emerge out of homogeneity. Levinthal (1997) shows that even if one starts 

from a population of homogeneous organizations, random local search 

induces mutations in different directions in the landscape. If K＞0 such 

initial random mutations will take organizations in the basins of attrac- 

tion of different local optima. On the other hand, selection and adapta- 

tion will only partially reduce such diversity.

If organizations can perform more radical changes (“long jumps”), i.e., 

mutate many (possibly all) features, also in presence of large K hetero- 

geneity tends to disappear, though very slowly, as organization located 

on sub-optimal peaks can always perform ― though with low probability

― a radical mutation which allows them to jump on a higher fitness 

“hills,” until they reach the highest one (i.e., the one whose peak is the 

global optimum). However, note also that if N is large enough such a 
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process may have a very low probability and be of no actual consequence 

for the medium term evolution of the population under consideration.8

Consider now the case of environmental changes, which can be 

modelled by re-drawing the fitness contributions of some features after 

the population has evolved and stabilized over previous local optima. 

Suppose first that such a change concerns only one feature and K＝

0, then if the fitness contribution of only one attribute is modified, the 

global optimum will either remain where it was or move to a point which 

is at most one mutation away. Thus, if the population has already 

evolved and located on the global optimum, it can easily and quickly 

adapt and move to the new global optimum. Simulations show that all 

incumbent organizations survive to such an environmental change.

However, if the complexity of the landscape is high (K＞0), even the 

modification of the fitness contribution of just one attribute can cause 

a large alteration of its shape. In high dimensional landscapes with large 

N local optima may well move far away. This implies that a population 

which has settled on the local optima of the initial landscape will find 

it generally very difficult to adapt to the change. Mortality of incumbents 

will rapidly rise as K increases.

If the environment changes more radically, i.e., the fitness contribu- 

tions of many (possibly all) the attributes are re-drawn, we get a different 

picture. As we have already mentioned, in a “simple” landscape with K

＝0 all organizations quickly converge to the same configuration, which 

correspond to the unique global optimum and diversity dies out. If a 

dramatic environmental shock happens for which the global optimum 

moves far away from its initial position, the entire population will find 

itself in a low fitness area of the landscape and incumbent organiza- 

tions are likely to be outperformed by newly created ones with random 

configuration.

On the contrary, with high K, to repeat, the population tends to re- 

main distributed over a large number of local optima but the upside of 

all that is that with some probability a subset of the population might 

well find itself not too far from the high fitness portion of the new post- 

shock landscape: diversity helps the population adapt to dramatic en- 

vironmental changes.

8 There is a much more general point here related to the time scale of evo- 

lution. In many dynamics there might well be an asymptotic state which however 

does not have any interpretative relevance for empirical phenomena as the time 

of convergence is extremely long.
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Levinthal’s analysis has been expanded and broadened by a few works 

which have further studied the relationship between organizational design 

and environmental complexity and turbulence. Rivkin and Siggelkow 

(2002) (cf. also Siggelkow and Rivkin 2006) tackle the issue of multi- 

level organizational search by introducing an explicit representation of 

organizational structures in NK-type models. Decisions over the N poli- 

cies (bits of the string) are allocated among different departments and a 

superordinate CEO has the function of coordinating departmental de- 

cisions.

More in detail, each department controls a given number of policies 

and is engaged in increasing the fitness contribution of such policies 

(climbing the departmental “subscape,” i.e., the landscape generated by 

only those policies). As ― in general ― any policy change in one depart- 

ment changes also the other departments’ fitness values, each depart- 

ment may also attach some weight to fitness changes of other depart- 

ments. This weight, ranging from 0 to 1, is a model parameter which 

stands for the degree of “horizontal” inter-department coordination.

Finally, the organization has a CEO endowed with the power of taking 

the final decisions by selecting departments’ proposals. For this purpose, 

the CEO asks each department i for their most preferred alternatives 

and selects those combination of departments’ proposals which deliver 

the highest organizational fitness.9

The interplay between departments and CEO creates what the authors 

call a set of “sticking points,” i.e., organizational configurations to which 

no alternative exists which can go through the approval of all subjects 

involved. Sticking points do not necessarily correspond to organizational 

local optima: first, cross-vetoes of departments and CEO can prevent 

also improvements which would increase the fitness of the organization 

and, on the other side, a department can, in some circumstances, im- 

plement a change which is beneficial for itself but not for the entire or- 

ganization and therefore unlock the organization from a local optimum, 

if it happened to be in one.

Divergence between the set of local optima and the set of sticking 

points is larger when the following conditions are met:

9 Some parameters di measure the degree of CEO discretion: at one extreme, 

if di is equal to one for all departments, then the CEO can automatically approve 

each department’s most preferred alternative, without any de facto selection 

power. At the other extreme, if di is equal to the number of all envisageable 

alternatives for all departments, then the CEO has a de facto full discretionary 

control over all policies.
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1. decisions are allocated among a larger number of departments;

2. interdependencies among policies allocated to different depart- 

ments are stronger;

3. the weight that each department attributes to other departments’ 

fitness is lower;

4. the number of proposals the CEO receives from departments is 

larger and the latter give higher weight to others’ fitness.

Sticking points are competency traps that organizations might want 

to escape from. One way to accomplish this is by changing the organ- 

izational structure. Siggelkow and Levinthal (2003) and Siggelkow and 

Levinthal (2005) analyze the performance consequences of changes in 

organizational structures, say from a centralized to a decentralized one, 

or vice versa. Quite a few, albeit not all, changes tend to be beneficial 

to performance, not so much due to the intrinsic superior fitness of the 

“new” organizational form but rather to the very fact that the switch 

has a de-locking effect upon past “sticking points.”

The set of goals a successful organization should pursue is not limited 

to the broad search on the performance landscape. Once a good set of 

decisions has been found, stability should also be among the priorities 

of organizational design (cf. Rivkin and Siggelkow 2003). Moreover, firms 

must take into account not only the performance level they can reach, 

but also the speed at which they can improve on it, especially in 

environments that change frequently and in no predictable ways (cf. 

Siggelkow and Rivkin 2005).

A comprehensive analysis of differences in performance between organ- 

izational structures in terms of stability, convergence time, and solution 

quality is offered by Mihm et al. (2010). In the analytical model they 

present, an organization is engaged in a purely decentralized search to 

solve a complex problem with many interdependent sub-problems.

The first crucial parameter is bi, j, which measures how much each 

agent discounts the importance of the other sub-problems compared with 

her own one. In one extreme case, all employees take fully into account 

the overall performance of the firm, bi, j＝1; in the opposite case, bi, j＝0 

when i≠j, each employee acts myopically. The second parameter is the 

rate at which agents update their information about the others’ deci- 

sions, the update time being an independent Poisson process for each 

decision maker. 

The decentralized search performs well, provided that all employees 

act fully holistically (bi, j＝1), and updating is immediate. What if bi, j＜1? 
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Mimh et al. show analytically that in this case the probability that the 

search is unstable approaches 1 as N grows. Intuitively, potential loops 

of mutual influence between agents grow up as interdependences are 

not taken fully into account into the decision process. 

Introducing hierarchy can change the problem-solving dynamics in 

two different ways. First, it can give managers a veto power over the 

others’ decisions. When this happens, the analytical result shows that 

the solution quality converges monotonically to a final level even at the 

cost of an inferior quality.

Second, the hierarchy can change communication and influences pat- 

terns among employees. By creating departments, workers in one group 

may consider the performance of other groups less important, or they 

can be less affected by the others’ decisions. If this second effect is al- 

lowed to operate, then it can be shown that there is always a choice of 

departments and of interdependence importance such that search pro- 

gress toward a solution becomes fast and stable, again at the cost of 

solution quality. Basically, cycling behaviours are avoided by weakening 

interdepartmental interdependencies.

In the simulated model, Mihm et al. consider a structure in which 48 

workers are grouped into six departments, which in turn are structured 

into two areas of three departments each; the area managers report to 

the CEO. The front-line workers are assumed to act holistically while 

differences in “myopia” are at the managers level. Moreover, updating 

among subgroups is delayed. 

Three dimensions of decision making are analyzed. The first is the 

order of problem solving, which can be parallel or sequential. The second 

is the locus of decision making. The third is the structure of the hier- 

archy.

Simulations results can be summarised in the following way. In the 

first dimension, sequential search performs better in most cases while 

parallel search is desirable only when speed is much more important 

than solution quality. In the second dimension, the key result is that 

decisions should be delegated to the lowest level that has the infor- 

mation necessary to make the decision. Centralization at the lowest man- 

agement level provides the same effect as full centralization, whether or 

not the managers act holistically. In the third dimension, the main dri- 

ver of the search performance is the size and the number of departments; 

how the structure is organized at the intermediate levels is irrelevant 

for the firm’s performance.

A final comment about the main building-block in NK models is in 
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order here. In most analysis, interactions among decisions are assumed 

to be randomly generated. However, organizations tend to show highly 

patterned interdependences between decisions. Rivkin and Siggelkow 

(2007) address this issue by emphasising the implications of different 

interaction patterns in terms of the long-run value of exploration along 

the landscape. Different interaction patterns are modelled as influence 

matrices that differ with respect to the actual arrangement of interde- 

pendences among decisions.

Their simulation shows that even if the total number of interactions 

among decisions is held constant, performance landscapes can differ 

markedly both in the number and in the average height of the peaks 

they contain. The key variables to understand what drives these dif- 

ferences are the number of “uninfluential” decisions, that is decisions 

that do not affect any other decision, and the number of “uninfluenced” 

decisions, that is decisions that are not affected by any other decision. 

The presence of “uninfluential” decisions creates large smooth subspaces 

on each performance landscape that limit the number of local peaks; 

on the other hand, when many decisions are uninfluenced, it is more 

likely to have a handful of decisions that are very sensitive to many 

other choices. This creates the potential for many conflicting constraints 

and lots of internally consistent configurations of choices.

As local peaks proliferate, it becomes more unlikely for a searching 

firm to climb a high peak. This result is quite common in NK models, 

but Rivkin and Siggelkow show that the proliferation of local peaks comes 

also from the very pattern of interactions, and not only from the actual 

degrees of epistatic correlations amongst decisions. Together, the perfor- 

mance difference between firms engaged in high exploration (that is, 

firms that in each period try to change many decisions) and firms en- 

gaged in low exploration (that is, firms that in each period try to change 

only one decision) is increasing in the number of local peaks. That is, 

the more rugged the performance landscape is, the more valuable is to be 

engaged in radical changes. 

　

C. Cognitive and Experiential Search

Gavetti and Levinthal (2000) add another perspective to the analysis 

of search processes and look at the relations between forward-looking 

and backward-looking search and their effects on performances. The roots 

of the distinction between the two search processes go back to Simon 

(1955): the former involves cognition-ridden, forward-looking choices 
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based on off-line evaluation of alternatives, even very distant from current 

behavior; the latter entails experiential choice based on on-line evalua- 

tion of a limited set of alternatives which are close to current behaviors. 

In Gavetti and Levithal’s model, the organization chooses a policy on 

the basis of a simplified and incomplete “cognitive model” of its environ- 

ment, entailing “templates” which cannot directly prescribe actions. In 

this context, existing practices function as defaults for elements not 

specified by the cognitive representation and allow the identification of 

a specific course of action. Thus, it may happen that actors with the 

same cognitive template may engage in different behaviors. 

These hypotheses are translated into a NK-based model in which the 

organization’s limited cognition corresponds to a simplified representa- 

tion of the fitness landscape which is assumed to be of lower dimen- 

sionality than the actual landscape (N1＜N), even if grounded in it. This 

is captured by the assumption that for each point of the cognitive re- 

presentation (of the perceived landscape) there are 2
N－N1 points in the 

actual fitness landscape that are consistent with this point. The fitness 

value assigned to each point of the cognitive representation corresponds 

to the average fitness values of these 2
N－N1 points.

An organization which chooses according to its cognitive representa- 

tion explores regions, and not single points, of the landscape, while the 

width of these regions depends on the crudeness of the representation. 

When both cognitive and experiential search are at work, organization 

identifies a pick in its perceived N1-dimensional landscape (by cognitive 

or off-line search) and then explores the remaining N－N1 alternatives 

through a local (or on-line) search based on one bit-mutations. The role 

of experiential search becomes more and more important as the crude- 

ness of the cognitive representation increases. It is important to notice 

here the role of the initial cognitive search in identifying the superior, 

on average, basins of attractions. Initial off-line search then helps in 

finding a good position from which the local search can start.

Gavetti and Levinthal show that in a context of competitive ecologies 

in which low performance organizations are selected out, organizations 

which adopt a joint cognitive and experiential search dominate the po- 

pulation. This becomes particularly evident under rugged landscapes, in 

which organizations which use purely experiential search are trapped 

into local optima.

In this framework what are the effects of adaptation through changes 

in the cognitive representation? Gavetti and Levinthal consider these 

effects both in the case of purely cognitive search and in that of joint 
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cognitive and experiential search, also with changes in the actual fitness 

landscape. In the case of pure cognitive representation the organization 

chooses an alternative on the basis of its understanding of the payoffs 

as characterized by a set of N1 attributes. In this case the effects of 

changes in the representation depend on the complexity of the land- 

scape (the value of K). If K is high these changes may produce good 

performances, as they can compensate for a poor representation of the 

landscape. However, if one considers organizations which use joint off- 

line and on-line search, the shift to a new representation may also de- 

stroy the accumulated (on-line) experience.

Changes in the representation can enhance organization’s performance 

when the landscape itself changes as the new representation may more 

effectively identify new (superior) basins of attraction, and this can 

compensate for the loss of experiential wisdom. 

However, the locus in which the change in the representation is de- 

cided can be crucial for the effectiveness of the change itself. Gavetti 

(2005) explores this linkage by situating the cognitive and the experiential 

search within hierarchical structures characterized by different alloca- 

tions of “cognitive rights.” In his NK model, each organization creates a 

new division engaged in a new line of business after an initial period of 

activity in a single line. Managers first explore the new landscape by 

way of local search, then decide which representation to use by com- 

paring the representations they have in their cognitive memory with the 

actual payoff of the local search. The organizational hierarchy deter- 

mines exactly at which level (firm or divisional) and in which way this 

choice is made. The performance outcome of the various organizational 

structures is analyzed in four contexts that differ along two dimensions. 

The first is the degree of economies of scope between the two divisions; 

the second is the heterogeneity between the problems they face. 

Simulation results show that the crucial mechanism driving the dif- 

ference in performances is the way in which information is processed in 

the exploratory phase. In particular, two properties seem to emerge. 

First, matching the outcome of the local search with an appropriate 

cognitive representation becomes more difficult as the manager in charge 

of decisions is higher in the hierarchy. This effect is stronger when 

divisions face heterogeneous problems as top managers, unlike divisional 

mangers, have to assess potentially contrasting action-outcome relation- 

ships. Second, a systematic bias favors signals originating in the old 

division: managers tend to select representations that fit the original 

business instead of choosing representations that capture the new do- 
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main. This effect is again increasing in the heterogeneity of the divi- 

sions’ businesses.

These models shed light on the role of cognitive search both in con- 

ditioning experiential learning by constraining the local search to the 

most promising regions of the landscapes and in shaping organizational 

search under different hierarchical structure. The analysis of the inter- 

play between the two logics of action in different contexts represents 

indeed a significant progress vis-à-vis representations of organizational 

search processes just via “one-bit mutation” search or totally random 

“big jumps.”

Knudsen and Levinthal (2007) look at another cognitive dimension of 

the search process, that is the capacity of evaluating alternatives. In 

fact, all the models considered so far take for granted that agents are 

always good at comparing the outcomes of the local search, but in many 

task environments this might not be true. Simulation results show indeed 

that an imperfect evaluation of alternatives can be beneficial for organ- 

izations in that it avoids the rapid identification of the local peak within 

the initial basin of attraction.

A further step in the direction of opening up the “organizational pro- 

blem solving black box” entails an explicit representation of organiza- 

tional problem solving procedures, their emergence and their dynamics.

　

D. Problem Solving Organization and the Division of Labor

Following Simon (1981), Marengo and Dosi (2005)10 focus on strategies 

for the reduction of problem complexity through the division of problem 

solving labor, that results in the decomposition of large and complex 

problems into smaller sub-problems which can be solved independently. 

In fact, process of division of labour is a major and long neglected dri- 

ving force in explaining the inner features and boundaries of economic 

organization. In particular, traditional organizational economics has con- 

centrated upon the governance of transaction and contractual relations 

between given “technologically separable” units, but does not tackle the 

analysis of where such technologically separable units come from or, even 

more importantly, of whether organizational structures have some at all.

The issue bears a fundamental importance because, first, most pro- 

cesses of division of labour take place within organizations and, second, 

it empirically happens that most of the times technologies are born in a 

10 See also Marengo et al. (2000).
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highly integrated fashion, and possibly undergo subsequent vertical di- 

sintegration both within and among firms. In other words, one could say 

that “in the origin there were organizations” and then markets develop 

along the lines defined by the processes of division of labour, rather than 

the other way round as postulated by transaction costs economics.

In Marengo and Dosi (2005) different organizational structures (with 

varying degrees of vertical integration) are compared in terms of their 

dynamic problem-solving properties determined by their patterns of divi- 

sion of labour and problem decomposition. The basic assumption is that 

solving a given problem requires the coordination of N atomic “elements” 

or “actions” or “pieces of knowledge,” which we can generically call com- 

ponents, each of which can assume some number of alternative states. 

The one-bit mutation algorithm at the basis of the NK model can be 

conceived as a particular case in which the problem is fully decom- 

posed and the search process is fully decentralized: each sub-problem 

consists of a single component (bit). As showed by Kauffman (1993), 

this algorithm is very quick, but it can converge only to the local op- 

timum whose basin of attraction contains the initial configuration. On 

the opposite extreme, there is the case of no decomposition at all, cor- 

responding to a strategy in which all the components (bits) are simul- 

taneously mutated. In this case the global optimum can be reached by 

exploring all the possible configurations. In between there are all the 

other possible divisions of labor strategies.

Note that the effectiveness of the decomposition, in terms of system 

performances, is strongly affected by the existence of interdependences 

among the components of the problem: so, for example, separating inter- 

dependent components and then solving each sub-problem indepen- 

dently will prevent the very possibility of overall optimization. Note also 

that, as pointed out by Simon, because of the opaqueness of the inter- 

relations between components, an optimal decomposition ― a division of 

labor that separates into sub-problems only the components that are in- 

dependent from each other ― cannot be generally achieved by bounded 

rational agents, who normally are bound to aim at near-decompositions, 

that is decompositions that try to put together within the same sub- 

problem only those components whose interdependences are “more im- 

portant” for the performance of the system.

Finally note that the search space is not given exogenously, but is 

constructed by agents that possess subjective representations of the 

structure of the problem. In that the distance between the real structure 

of the problem (its real decomposition) and the subjective representa- 
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tion that agents have of it has a dramatic effect on problem solving out- 

comes.

More formally, one can characterize a problem by the following elem- 

ents:

The set of components: C＝{c1, c2,…, cN }, where each component can 

take one out of a finite number of states. Normally, a binary set of 

components is assumed for simplicity: ci ∈ {0, 1} ∀i.

A configuration, that is a possible solution to the problem: xi＝c1
i
c2

i
... cN

i
.

The set of configurations: X＝{x
1, x2, ..., x2N

}.

An ordering over the possible configurations: xi ≥ x j (or xi＞ x j ) holds 

whenever xi is weakly (or strictly) preferred to x j.

A problem is fully defined by the pair (X, ≥).

As the size of the set of configurations is exponential in the number of 

components, whenever the latter is large, the state space of the problem 

becomes much too vast to be extensively searched by agents with 

bounded computational capabilities. One way of reducing its size is to 

decompose11 it into sub-spaces.

Let I＝{1, 2, ..., N } be a set of indexes and let a block12 di ⊆ I be a 

non-empty subset of it; the size of block di is its cardinality |di|. A 

decomposition of the problem (X, ≥) is defined as a set of blocks:

D＝{d1, d2,…, dk} such that 
1

k

i
i
d I

=

=∪ .

Note that a decomposition does not necessarily have to be a partition 

(that is the intersection between two decompositions need not be the 

empty set).

Given a configuration x
i and a block dj, the block-configuration xi(dj) 

is the substring of length |dj| containing the components of configur- 

11 A decomposition can be considered as a particular case of search heuris- 

tics: search heuristics are, in fact, ways of reducing the number of configur- 

ations to be considered in a search process.
12 Blocks in our model can be considered as a formalization of the notion of 

modules used by the flourishing literature on modularity in technologies and 

organizations (Baldwin and Clark 2000) and decomposition schemes are a for- 

malization of the notion of system architecture which defines the set of modules 

in which a technological system or an organization are decomposed. We will 

come back to modularity literature later on. 
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ation xi belonging to block dj:

1 2 | |
( ) ... .

dj

i i i i
j j j j h jx d x x x j d= ∀ ∈

The notation xi(d－j) is used to indicate the substring of length N－|dj| 

containing the components of configuration x i not belonging to block dj.

Two block-configurations can be joined into a larger block-configuration 

by means of the ∨ operator so defined: x (dj)∨y(dh)＝z(dj∪dh) where  

zk＝xk if k ∈ dj and zk＝yk if k ∈ dh.

The size of a decomposition is defined as the size of its largest de- 

fining block:

|D|＝max{|d1|, |d2|, …, |dk|}.

Coordination among blocks in a decomposition may either take place 

through market-like mechanisms or via other organizational arrange- 

ments (e.g., hierarchies). Dynamically, when a new configuration appears, 

it is tested against the existing one according to its relative performance. 

The two configurations are compared in terms of their ranks and the 

superior one is selected, while the other one is discarded.

More precisely, let us assume that the current configuration is x
i and 

take block dh with its current block-configuration x i(dh). Let us now 

consider a new configuration x j(dh) for the same block, if:

x
j(dh) ∨ x i(d－h) ≥ x i(dh) ∨ xi(d－h)

then x j(dh) is selected and the new configuration x j(dh) ∨ xi(d－h) is kept 

in place of x
i, otherwise x j(dh) is discarded and x i is kept.

It might help to think in terms of a given division of labor structure 

(the decomposition scheme) within firms, whereby individual workers and 

organizational sub-units specialize in various segments of the production 

process (a single block). Decompositions, however, sometimes determine 

also the boundaries across independent organizations specialized in dif- 

ferent segments of the whole production sequence.

Note that, dynamically, different inter-organizational decompositions 

entail different degrees of decentralization of the search process. The 

finer the inter-organizational decompositions, the smaller the portion of 

the search space which is being explored by local variational mechanisms 

and tested (however indirectly) by market selection. Thus there is in- 
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evitably a trade-off: finer decompositions and more decentralization make 

search and adaptation faster (if the decomposition is the finest, search 

time is linear in N), but on the other hand, the process explores smaller 

and smaller portions of the search space, thus decreasing the likelihood 

that optimal (or even “good”) solutions are ever generated and tested.

Decompositions are sorts of templates (“categorizations” in the “mental 

models” perspective) which determine how new configurations are gen- 

erated and can be tested afterward by the selection mechanism. In large 

search spaces in which only a very small subset of all possible confi- 

gurations can be generated and undergo testing, the procedure em- 

ployed to generate such new configurations plays a key role in defining 

the set of attainable final configurations.

Marengo and Dosi assume that boundedly rational agents can only 

search locally in directions which are given by the decomposition: new 

configurations are generated and tested in the neighborhood of the given 

one, where neighbors are new configurations obtained by changing some 

(possibly all) components within a given block.

Given a decomposition D＝{d1, d2,…, dk}, a configuration x i is a pre- 

ferred neighbor or simply a neighbor of configuration x
j with respect to 

a block dh ∈ D if the following three conditions hold:

1. x
i ≥ x j

2. 
i j
k k hx x k d= ∀ ∉

3. xi ≠ x j.

Conditions 2 and 3 require that the two configurations differ only by 

components which belong to block dh. According to the definition, a 

neighbor can be reached from a given configuration through the oper- 

ation of a single decentralized coordination mechanism.

The set of neighbors of a configuration x for block di is called Hi (x,

di).

The set of best neighbors Bi (x, di) ⊆ Hi (x, di) of a configuration x for 

block di is the set of the most preferred configurations in the set of 

neighbors:

Bi (x, di)＝{y∈Hi (x, di) such that y ≥ z   ∀z∈Hi (x, di)}

By extension from single blocks to entire decompositions, the definition 

of the set of neighbors for a decomposition is:
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Here the configuration is a local optimum for the decomposition D if 

there does not exist a configuration y such that y∈H(x, D) and y＞x.

A search path or, for short, a path P(x
i, D) from a configuration xi 

and for a decomposition D is a sequence, starting from xi, of neighbors:

P(x
i, D)＝xi, x i＋1, xi＋2,… with  xi＋m＋1∈H(xi＋m, D).

A configuration x
j is reachable from another configuration x i and for 

decomposition D if there exists a path P(xi, D) such that x j∈P(xi, D).

Suppose configuration x j is a local optimum for decomposition D: the 

basin of attraction of x
j for decomposition D is the set of all config- 

urations from which x j is reachable:

Ψ (x j, D)＝{y, such that ∃P (y, D) with x j∈P (y, D)}.

Now let x0 be the global optimum and let Z⊆X with x0∈Z. We say 

that the problem (X, ≥) is locally decomposable in Z by decomposition 

D if Z⊆Ψ (x0, D). If Z＝X, we say that the problem is globally decom- 

posable by decomposition D.

The perfect decomposability requirement can be softened into one of 

near-decomposability: the problem is no longer required to be decom- 

posed into completely separated sub-problems, i.e., sub-problems which 

fully contain all interdependencies, but it can be sufficient to find sub- 

problems which contain the most relevant interdependencies, while less 

relevant ones can persist across sub-problems. In this way, optimizing 

each sub-problem independently will not necessarily lead to the global 

optimum, but to a “good” solution. In other words, near-decompositions 

give a precise measure of the trade-off between decentralization and op- 

timality: higher degrees of decentralization, while generally displaying a 

higher adaptation speed, are likely to be obtained at the expense of the 

asymptotic optimality of the solutions which can be reached.

As a consequence, Marengo and Dosi arrange all the configurations 

in X by descending rank X＝{x
0, x1, x2, ...} where xi≥xi＋1, and Xμ＝{x0,

x1, ..., x μ－1} is the ordered set of the best μ  configurations. Xμ is said to 

be reachable from a configuration y∉Xμ and for decomposition D if 

there exists a configuration xi∈Xμ such that xi∈P(y, D).



SEOUL JOURNAL OF ECONOMICS276

The basin of attraction Ψ (Xμ, D) of Xμ for decomposition D is the set 

of all configurations from which Xμ is reachable. If Ψ (Xμ, D)＝X, D is a 

μ-decomposition for the problem. μ-decompositions of minimum size can 

be found with an algorithm which computes minimum size optimal de- 

compositions.

It is straightforward to show that as μ  increases one can generally 

find finer near-decompositions. This shows that the organizational struc- 

ture sets a balance in the trade-off between search and adaptation speed 

and optimality. It is easy to argue that in complex problem environ- 

ments, characterized by strong and diffused interdependencies, such a 

trade-off will tend to produce organizational structures which are more 

decomposed and decentralized than what would be optimal given the 

interdependencies of the problem space. 

Different organizational forms implement different decomposition heur- 

istics and might be characterized by different representations of the pro- 

blem and therefore present different properties in terms of the effective- 

ness and efficiency of the derived search processes (cf. Marengo, Pasquali, 

and Valente (2005) for a theoretical discussion of the topic). In particular 

a trade-off exists between complexity and optimality: a finer decomposi- 

tion makes search faster, but the exploration of smaller portion of the 

search space reduces the likelihood to generate and then select an opti- 

mal solution. The application of these ideas to organizational design leads 

to the comparison, in terms of relative performance, between not decom- 

posed tasks (organization-embodied) and decomposed tasks (coordinated 

via market-like mechanism or via simple organizations structured as 

sets of perfectly independent tasks). One of the main conclusions is that 

the advantages of decentralization (faster adaptation) usually imply a 

cost in terms of sub-optimality (impossibility to reach global optima). 

This casts strong doubts on the efficacy of market selection processes 

as substitutes for individual optimization: selection is not able to select 

out sub-optimal features nor to select for optimal ones if both are some- 

how complementary to each-other in actual organizations and technol- 

ogies.

E. Modelling the Coupling Mechanisms between Capabilities and 

Governance

Marengo and Dosi (2005), as well as most of contributions of this 

genre, while concentrating on the problem-solving features of organiza- 

tional dynamics, censor any incentive compatibility issue. An attitude 
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that, as noted above, is quite typical within the capability-based frame- 

work. 

There is nothing, however, preventing this type of analysis to go be- 

yond the exclusive focus on firms as loci of coordination and as loci of 

creation, implementation, storage and diffusion of productive knowledg

e13 and explicitly take on board the issues of incentive governance and 

control discussed qualitatively in Coriat and Dosi (1998). Attempts in 

this direction are formal analyses by Dosi, Levinthal, and Marengo 

(2002, 2003) which incorporate issues of conflict of interests, power 

and control over agents’ decisions within the analytical framework of 

Marengo and Dosi (2005) and Marengo et al. (2000) and discuss the 

interaction between problem representation and incentive mechanisms. 

In particular, the double role of problem representation is stressed: on 

the one hand it defines the “cognitive” structure of the problem and the 

consequent decomposition which is adopted (definition of teams as sub- 

sets or blocks of components); on the other hand, it has important con- 

sequences for a reward mechanism based on the distinction between 

organization’s (system) and team’s (block) performance as it defines what 

organization conceives as a team.

The analysis starts by considering the conflicts of interest among pro- 

blem solving teams generated by the adoption of team-level incentive 

mechanisms. While under a global reward an alternative (a particular 

configuration of sub-problem’s components) is selected if it improves 

the overall organization’s performance, with a team-level reward mech- 

anism a would-be alternative is accepted if it enhances the performance 

of the unit even if it degrades the overall organization’s performance. It 

can be shown that if the organization’s representation of the problem is 

not correct (it does not correspond to the right structure of the problem 

in terms of interrelations among components) the adoption of a global 

reward allows the organization to reach a global optimum. But what is 

more interesting is that, even if the representation of the problem is not 

correct, the adoption of a team-level reward structure tends, in the long 

run, to produce performances that are similar to the global-reward one. 

13 A more complete “co-evolutionary” picture is discussed by Dosi (1995). 

Organizations are assumed to be characterized by six correlated dimensions: the 

distribution of formal authority; the distribution of power; the incentive struc- 

ture; the structure of information flows; the distribution of knowledge and com- 

petence. In this context organization dynamics can be conceived as a process of 

adaptation and selection according to multiple, and possibly conflicting, object- 

ives.
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Thus, goal conflicts prevent the organization to remain absorbed in local 

optima and act as substitute for a correct representation of the problem 

(Dosi, Levinthal, and Marengo 2002).

Power is introduced by allowing one team (a block in the decompo- 

sition) to stop the mutation of any other blocks that decreases its own 

performance (veto power). The evidence suggests that, under specific 

conditions, the adoption of such a mechanism leads to good solutions. 

In particular, a team reward scheme with veto power is superior to the 

global reward structure when the organizational representation of the 

problem is based on a finer decomposition than the real one and the 

latter is not too complex. This is due to the fact that veto power inter- 

rupts the cycling among possible solutions generated by a team-based 

reward structure preserving the advantages in terms of greater search 

effort which are typical of this reward mechanism.

A principal-agent-like model of interaction is reproduced considering 

the case of control over the decisions of other organizational members 

by a principal, the residual claimant of the total payoff, who can “order” 

others to keep performing a given action or to switch to a different one. 

This activity is considered to have a cost which depends on the span of 

control, i.e., the dimension of each sub-unit, and it is higher when the 

principal wants to induce a change in agent’s action than when he wants 

to elicit the same behaviour (the principal’s profit is defined as the total 

output of the organization minus the “elicitation cost”). When actions 

are interdependent, the control function, as any other problem-solving 

activity, cannot be entirely decomposed. Thus, the interaction between 

a cognitive dimension and a control dimension has to be considered. 

The effects on total performance and the principal’s profit are analyzed 

considering four different cases: right, almost right, wrong and minimal 

(one-component units) perceived decomposition by agents, with reference 

to different decompositions of the underlying problem and the “correct- 

ness” of the decomposition itself.

Obviously if the organizational decomposition is the “true” one, per- 

fectly knowledgeable agents not facing any incentive compatibility problem 

would make costly control redundant. However, interestingly, when the 

organization has a wrong representation of the problem space (and in 

particular underestimates the span of interdependencies), agents subject 

to costly control may generate a better performance than the one pro- 

duced by perfectly ‘cooperative’ agents.

Finally Dosi, Levinthal, and Marengo (2002) analyze more explicitly 

the double role of problem representation. The work examines, in par- 
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ticular, by means of a simulation model, the relations between cognitive 

decompositions and operational decompositions. The former establish 

search heuristics and targets, whereas the latter implement search pro- 

cesses driven by those targets. The exercise shows that if cognitive de- 

compositions are correct then it is efficient to have maximum division 

of labor at the operational level, as this increases speed and accuracy 

of adaptation to targets. On the contrary, if cognitive decompositions do 

not correspond to the “true” ones, coarser division of labor at the oper- 

ational level ensures less accurate but prompt adaptations to the im- 

perfectly set target.

　

F. Modularity and Organizational Architecture

The existence of different organizational decompositions and hierarchies 

poses a problem: to what extent can boundedly rational agents identify 

the true structure? Ethiraj and Levinthal (2004a) address this question 

within a NK model in which organizations are characterized along the 

two dimensions of “decomposability” and “hierarchy.” In a loosely (tightly) 

coupled organization, there are few (many) interdependencies between 

departments; in the second dimension, the organization is said to be 

“hierarchical” if the structure of interdependencies between departments 

is unidirectional (e.g., the decisions of the first department influence 

the decisions of the second department, but not the other way around).

In the model, there are five relevant aspects that need to be specified. 

The first is the generative structure that can be of four different types, 

depending on the characteristics along the two dimensions. The second 

is the boundedly rational second-order adaptation that concerns the or- 

ganization design. Managers are assumed to have control over the num- 

ber of departments and the assignment of functions to them. In parti- 

cular, they can split an existing department into two or more new de- 

partments, can combine two or more into one or reallocate functions 

among them. 

The third aspect is the first-order adaptation which corresponds to 

the usual one-bit mutation implemented simultaneously in each of the 

departments. The fourth is the environmental change which is modelled 

as a random change in the generative structure that affects the coupling 

of decision both within and between departments. The final modelling 

specification concerns the selection mechanism. Here, the probability 

that an organization will be selected is proportional to its performance.

Simulation results show that hierarchical structures are always able 
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to converge to the generative structure when managers are engaged in 

second order adaptation. On the contrary, non-hierarchical structures 

never manage to reach a stable state. Non-hierarchical and loosely 

coupled structures continue to exist in six different forms at the end of 

the experiment; non-hierarchical and tightly coupled structures preserve 

the initial heterogeneity throughout the experiment, suggesting that 

second-order adaptation is relatively ineffective. 

When an environmental change occurs, the effectiveness of second- 

order adaptation is considerably reduced, but the ranking between or- 

ganizations is the same as before. Non-hierarchical and tightly coupled 

organizations are the bad performers also in this case. 

Ethiraj and Levinthal address also the question of complementarity of 

first-order and second-order adaptation with results that are similar to 

the ones presented above. When there is a simultaneous process of first- 

order and second-order adaptation, all organizational structures perform 

better with respect to the setting in which only first-order adaptation is 

on the stage. In the ranking, the bad performer is, once again, the non- 

hierarchical and tightly coupled organization.  

Ethiraj and Levinthal (2004b) use a similar setup in order to answer 

the following question: given a “true” structure and supposing that 

boundedly rational agents are unable to uncover it, is it better to 

“over-modularize” or to “under-modularize”? In particular, how does over- 

or under-modularization affect local search and module recombination 

performance over time?

Simulations show that when firms are engaged only in local search, 

the effectiveness of innovation is lower the greater the deviation of the 

design structure from the true underlying structure. More interesting, 

Ethiraj and Levinthal find that, in the long run, erring on the side of 

greater integration poses lower performance penalties than erring on 

the side of greater modularity. 

When module recombination is allowed to operate, things get more 

complicated. With recombination but no local search, over-modularization 

gives more benefits than under-modularization. Recombination helps firms 

to avoid local peaks, but as the size of each module gets larger, a 

greater number of decision choices will be replaced and the probability 

of incorrect changes becomes higher. When recombination and local 

search are allowed to interact, under-modularizing is again a better 

strategy than over-modularizing. With few modules, local search com- 

pensates for the poor performance of recombination; with many mo- 

dules, local search appears to counteract the effect of recombination.
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IV. Conclusions

Parallel to the qualitative analyses of organizations as structured 

bundles of problem-solving capabilities (for critical reviews of the litera- 

ture cf. Dosi and Marengo 1995, 2000; Dosi, Faillo, and Marengo 2008a, 

2008b), a growing number of contributions have begun to offer formal 

accounts of such organizational properties and their dynamics. The formal 

instruments are diverse: they include NK models representing organiza- 

tions as ensembles of interrelated “traits” mapping into some overall en- 

vironmental fitness of the firm; classifiers system representations of the 

problem-solving procedures triggered by diverse internal or environmen- 

tal states; decomposition schemes of Simonian ascendancy allowing the 

analysis of the performance properties of different “representations” in 

the problem-solving space and different patterns of division of cognitive 

and operational labour.

The formal modelling of organizations as problem-solving entities bears 

important consequences also in terms of the theory of production and 

technology. In fact, the problem-solving activity conceived of as combin- 

ations of physical and cognitive acts, within a procedure, leading to the 

achievement of a specific outcome is quite near to a representation of 

technology in action conceived as a recipe or a procedure. However, the 

properties of such representation into the (lower dimensional) space of 

input/output relations is till underanalyzed, an exception being Auerswald 

et al. (2000) who offer a promising example of the use of the apparatus 

of NK models to study the microeconomic theory of technological evo- 

lution (cf. also the discussion in Dosi and Grazzi 2006 and Dosi and 

Nelson 2010).

The results begin to highlight important comparative properties regard- 

ing, among other, the impact on problem-solving efficiency and learning 

of different forms of hierarchical governance, the dangers of lock-in as- 

sociated with specific forms of adaptive learning, the relative role of “on- 

line” vs. “offline” learning, the impact of the “cognitive maps” which or- 

ganizations embody, the possible trade-offs between accuracy and speed 

of convergence associated with different “decomposition schemes,” the 

(ambiguous) role of organizational memory in changing environments.

In a nutshell, one has finally begun to develop formal instruments 

allowing exercises of comparative institutional analysis (cf. Aoki 2001), 

focusing on the distinct properties of different forms of organization and 

accumulation of knowledge. It is a work which is only at its exciting 
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start.
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